
ECTester: Reverse-engineering side-channel
countermeasures of ECC implementations

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz
Chmielewski

Masaryk University, Brno, Czechia

Abstract. Developers implementing elliptic curve cryptography (ECC) face a wide
range of implementation choices created by decades of research into elliptic curves.
The literature on elliptic curves offers a plethora of curve models, scalar multipliers,
and addition formulas, but this comes with the price of enabling attacks to also
use the rich structure of these techniques. Navigating through this area is not
an easy task and developers often obscure their choices, especially in black-box
hardware implementations. Since side-channel attackers rely on the knowledge of the
implementation details, reverse engineering becomes a crucial part of attacks.
This work presents ECTester – a tool for testing black-box ECC implementations.
Through various test suites, ECTester observes the behavior of the target implementa-
tion against known attacks but also non-standard inputs and elliptic curve parameters.
We analyze popular ECC libraries and smartcards and show that some libraries and
most smartcards do not check the order of the input points and improperly handle
the infinity point. Based on these observations, we design new techniques for re-
verse engineering scalar randomization countermeasures that are able to distinguish
between group scalar randomization, additive, multiplicative or Euclidean splitting.
Our techniques do not require side-channel measurements; they only require the
ability to set custom domain parameters, and are able to extract not only the size but
also the exact value of the random mask used. Using the techniques, we successfully
reverse-engineered the countermeasures on 13 cryptographic smartcards from 5 major
manufacturers – all but one we tested on. Finally, we discuss what mitigations can
be applied to prevent such reverse engineering, and whether it is possible at all.
Keywords: elliptic-curve cryptography · black-box implementations · testing ·
vulnerabilities · reverse-engineering · ECDH · ECDSA

1 Introduction
Elliptic curve cryptography (ECC) implementations have been hard hit by bugs and
vulnerabilities, likely due to their complexity. Focusing just on input validation in the
elliptic curve Diffie-Hellman protocol (ECDH) alone, there has been the small-subgroup
attack [LL97a], twist curve attack [FLR+08], invalid curve attack [BMM00; ABM+03]
and degenerate curve attack [NT16]. TLS servers and libraries in the wild were found
vulnerable to the invalid curve attack in 2015 [JSS15]. The same then happened to
JSON Web Token implementations in 2017 [Ngu17; San17a]. Staying with ECDH, there
were several cases where an innocuous miscomputation bug lead to key-recovery, first in
OpenSSL in 2012 [BBP+12], and then in the Go standard library in 2017 [Val17].

Expanding the lens to include ECDSA and similar signature schemes, we see more
issues. Input validation issues lead to such curious cases, where the (0, 0) signature was
deemed valid for any message by any key. This issue was dubbed “psychic signatures”,
discovered in OpenJDK in 2022 and surfaced both before and after in cryptocurrency-
related implementations [Mad22; NCC21; Ngu21]. Failure to properly validate certificate
contents lead to the “CurveBall” vulnerability in Microsoft’s CryptoAPI, which allowed
trivial certificate spoofing (CVE-2020-0601). Finally, we invite an interested reader to
examine the list of bugs found by the CryptoFuzz project [Vra19; Moz24].

2 Reverse-engineering side-channel countermeasures of ECC implementations

This unending stream of issues and vulnerabilities raises the question: Do current
implementations of ECC properly defend against known vulnerabilities? Bug reoccurrence,
i.e., a regression, is quite common in software development, as is bug co-occurrence, as
demonstrated by the several different implementations vulnerable to invalid curve attacks
at different points in time. The efforts that uncovered the above issues were usually focused
only on a single or a few implementations, with the exception of the CryptoFuzz project.
However, all of them were focused on open-source software implementations. To answer the
posed question, we systematically test open-source ECC libraries and smartcards against
a plethora of tests constructed from known attacks in our tool ECTester.

Recent work [JSS+24] has shown that the space of all possible ECC implementations
is vast enough to warrant reverse engineering. All the possible combinations of different
coordinate systems, formulas, scalar multipliers, and their parameters yielded almost 140
thousand configurations. Additionally, their analysis of open-source ECC libraries has
shown that this is not true just in theory, but that developers do leverage all of the options
and even extend them by modifying existing techniques. The authors proposed several
methods for reverse-engineering ECC implementations using side-channel attacks with a
high success rate, though not applicable to implementations using scalar randomization.

This raises yet another question: Can the behavior of implementations under tests
be used for reverse-engineering? We answer this in the positive, by designing several
techniques for reverse engineering scalar randomization countermeasures that are able to
distinguish between group scalar randomization, additive, multiplicative, or Euclidean
splitting. The techniques do not require side-channel measurements and are immune to
other side-channel attack countermeasures. Furthermore, the techniques are able to recover
the random mask size, and with some probability also the mask value in case of two of
the countermeasures. Such mask value recovery on black-box targets allows for more
side-channel analysis than was possible before, including mounting the learning phase of
profiled attacks. Our techniques question the practice of rewarding information hiding
and security by obscurity in security certifications such as Common Criteria [CC; JIL].

Contributions.

• The ECTester tool1 for testing of ECC libraries and JavaCards, supporting 12 popular
libraries and any JavaCard, offering a unified API for testing. Released under a permis-
sive open-source license. Its repository is available here: https://github.com/crocs-
muni/ECTester.

• Techniques for reverse-engineering of scalar randomization countermeasures that only
require control over the domain parameters, but require no side-channel measurements
or faults, and can recover the mask size and value.

• Reverse-engineering of countermeasures on 13 cryptographic smartcards from major
manufacturers, many of which are certified under Common Criteria or FIPS 140.

Outline. In Section 2 we give background on elliptic curve cryptography, implementation
attacks on ECC as well as side-channel attack countermeasures. Then we present related
work on testing cryptographic implementations and reverse-engineering in Section 3.
Section 4 presents our methodology for testing ECC implementations, while Section 5
contains a selection of our results. In Section 6 we present our techniques for reverse
engineering scalar randomization countermeasures and results on smartcards from major
manufacturers. We discuss the implications of our findings and mitigations in Section 7.

Responsible disclosure. We contacted three out of the five manufacturers of smartcards
we were able to reverse-engineer and shared our findings with them. Despite trying, we
were unable to establish security contacts with the remaining two manufacturers.

1The tool was previously used in the discovery of the Minerva group of vulnerabilities [JSS+20], yet
not described. We have expanded it significantly since then, and present its other results.

https://github.com/crocs-muni/ECTester
https://github.com/crocs-muni/ECTester

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 3

2 Background
We focus on short Weierstrass curves y2 = x3 + ax + b over a prime field Fp with p > 3.
The set of points E(Fp) defined over Fp form a group with neutral element O. ECC
protocols work with curves that contain a large subgroup of prime order n and generator
G. Denote h the cofactor, i.e., #E(Fp) = nh. Assuming that n and h are coprime then
any point on P ∈ E(Fp) can be expressed as the sum Pn + Ph of points of orders n, h
respectively, with either possibly equal to O.

The group addition P + Q is defined by rational functions (also called the addition
law) in the coordinates of the points P and Q. Usually, points on an elliptic curve are
represented using some form of projective coordinates (e.g., Jacobian, modified Jacobian,
standard projective, etc.). In these coordinate systems, there exist addition laws defined
by polynomial functions that allow to avoid costly divisions. Unfortunately, every addition
law has a pair of exceptional points in (E × E)(Fp) on which the law does not work.
There are two approaches to solving this issue. First, one can use at least two addition
laws to cover all the necessary points, e.g., an add formula and a doubling special case.
Second, some addition laws [RCB16] have been designed to have the exceptional points
outside of the main subgroup of order n. The Explicit Formulas Database (EFD) [BL07]
collects formulas of various coordinate systems for addition as well as for the special case
of doubling (P = Q), differential addition, ladder, and others.

The addition naturally defines scalar multiplication kP = P + · · ·+ P . Similarly as for
the formulas, the literature contains numerous algorithms for scalar multiplication. They
usually scan through the representation of the scalar k and perform additions corresponding
to the values of the digits. The double-and-add multiplier scans the bits of k in either
left-to-right (LTR) or right-to-left (RTL) fashion, adding P to an accumulator depending
on the bits. Since the subtraction of a point has essentially the same cost as addition, a
speed-up can be gained by expressing the scalar in the non-adjacent form (NAF) with
signed bits 1 and −1. A generalization of this are the window-based scalar multipliers,
where the scalar is split into windows of size w and for each window a precomputed multiple
mP , m < 2w is added to the accumulator. The window multipliers are either sliding
or fixed, which describes the relationship of the window to the scalar bits. The comb
multipliers follow a similar idea as the window-based with the difference that windows
are not consecutive subsequences of bits of k, but are distributed in a regular comb-like
pattern across the whole binary representation of k. Ladder multipliers scan the bits of k
too, but keep a pair of accumulators and update them using a special ladder formula. See
[HMV04] for a detailed overview of popular scalar multipliers.

2.1 Weak curves
The underlying hard problem that forms the basis for all classical ECC protocols is the
elliptic curve discrete logarithm problem (ECDLP): Given a multiple of the generator
P = kG, find k. If the base field Fp is large enough (i.e., p has > 160 bits), the problem is
hard in general. However, there are known classes of weak curves with easier ECDLP:

• Curves with smooth cardinality can be attacked by the Pohlig-Hellman attack that
breaks the ECDLP for each factor of the cardinality [PH78].

• Anomalous curves, for which n = p, are vulnerable to the Semaev-Satoh-Araki-Smart
attack [Sem98; TA98; Sma99].

• When the embedding degree (the order of n ∈ F×
p) is small (< 20) the Menezes-

Okamoto-Vanstone attack can be used to reduce the ECDLP to an easier finite field
DLP [MVO91].

4 Reverse-engineering side-channel countermeasures of ECC implementations

2.2 ECC protocols
Private keys in ECC are represented as scalars d ∈ Zn and the corresponding public key
for each d is the point P = dG. Recovering the private key d from the public key P is
protected by the ECDLP. The targets of our testing are the elliptic curve Diffie-Hellman
key exchange (ECDH) protocol, the digital signature algorithm ECDSA, and their variants.

The ECDH protocol can be divided into two subroutines. Using the Keygen subroutine,
both parties, A and B, generate their private keys dA, dB as random numbers from the
interval [1, n), where n is the order of the large subgroup generated by G. Then they
compute and exchange the corresponding public keys PA = dAG, PB = dBG. In the
Derive subroutine, both parties compute S = dBPA = dAPB . The resulting shared secret
is the value KDF(S), where KDF is an appropriate key derivation function, usually some
hash of the x-coordinate of the point S. Furthermore, there is ephemeral ECDH where a
keypair is used only once and static ECDH where a keypair is reused.

Apart from the Keygen, the ECDSA protocol is based on two subroutines: Sign and
Verify. To sign a hash of a message H(m), the owner of the private key d generates
a random nonce k and computes R = kG, r = xR (mod n) and s = k−1(H(m) + dr)
(mod n). The signature is the pair (r, s) that can be verified by computing the x-coordinate
x of the point H(m)s−1G + rs−1P and checking that x (mod n) is equal to r.

2.3 Public key validation
Both parties in the ECDH protocol take as an input the public key P of the other party
and perform a scalar multiplication dP using their private key d. To protect d, it is
crucial to properly validate the point P . According to several major ECC standards
(SECG SEC1 [SEC09], NIST SP 800-56 [NIST18; NIST23], ANSI X9.62 [ANSI05], IEEE
P1363 [IEEE00]), the validation is composed of three steps.
P ̸= O. While every affine point can be represented using the x, y coordinates, for the
infinity point O one needs a projective coordinates (X : Y : Z) in which O lies in the
projective plane given by Z = 0. The precise representation depends on the coordinate
system (e.g., O = (0 : 1 : 0) for the standard projective and O = (1 : 1 : 0) for the Jacobian
coordinates). The standards SECG, NIST, X9.62 define the zero byte string as O and
any affine point has the first byte nonzero (indicating the potential compression). Thus,
checking that P ̸= O is trivial.
P lies on the curve. The public key point contains the affine coordinates x, y in either
compressed or uncompressed form. The implementation should check that x, y represent
elements of the finite field Fp (i.e., check that x, y ∈ [0, p)). Any pair (x, y) that then
satisfies the curve equation y2 = x3 + ax + b is an affine point on the curve. Failure to test
this can lead to the invalid or twist curve attack (see Section 2.5).
P is in the correct subgroup. The point P should lie in the subgroup of order n. Otherwise
the small subgroup attack is applicable for ECDH and a number of bits of the private key
can be recovered depending on the size of the cofactor h. There are four common ways
how implementations deal with this after receiving an affine point P :

• Compute R = nP and reject the point if R ̸= O. This is recommended by several
standards including NIST FIPS, SECG, X9.62, and P1363.

• Compute R = (h−1 (mod n))hP and proceed the protocol with R. This computation
clears out the cofactor part of the point, i.e., if P = G+Ph, then (h−1 (mod n))h(G+
Ph) = G + (h−1 (mod n))O = G. Depending on the protocol, the details of this
might differ. For instance, in the computation of the shared secret kP in the Diffie-
Hellman protocol, we can replace k with ((h−1 (mod n))hk). The costly inverse h−1

can be precomputed during the domain parameter set up.

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 5

• Use a modified version of the protocol which deals with the cofactor as part of the
protocol. This is the approach of the Cofactor Diffie-Hellman protocol. The shared
secret is khP instead of kP . Similarly, the popular X25519 protocol assumes that
the private key is a multiple of the cofactor h = 8, i.e., k = 8k0 for some k0.

• Ignore the subgroup check. This is not necessarily a sign of negligence. All of
the above validation options are expensive (i.e., as expensive as the ECDH secret
derivation). Moreover, the most popular NIST curves have cofactor h = 1. Finally,
the small subgroup attack (as described in Section 2.4) that is possible because of
the lack of validation can only recover a few bits of the private key. Note, however,
that other variants of the attack [LL97b] aim for key reuse rather than key recovery.

2.4 Small subgroup attacks
The small subgroup attacks target the ECDH protocol that works over a curve with a
nontrivial cofactor h ≠ 1. The attacker sends to the victim B their public key PA as part
of the ECDH protocol. The attacker assumes that the victim omits the check that PA

lies in the subgroup of order n. If the point PA has order h, then dBPA ∈ {PA, . . . , hPA},
where dBPA is computed by B with their private key dB. As a result, the shared secret
KDF(dBPA) can be then enumerated (and checked with the actual shared secret computed
by victim) by the attacker which leaks dB (mod h) to them [LL97a].

Contrary to the statement on the SafeCurves website [BL17; BL24], it is not enough to
reject points PA with hPA = O, though it would be faster than computing and rejecting
points with nPA ̸= O. The attacker can send a mixed order point PA = G + Ph, where Ph

is a point of order h. The party B then computes dBPA = dBG + dBPh = PB + dBPh.
The space of possible shared secrets {KDF(PB + Ph), . . . , KDF(PB + hPh)} can be easily
enumerated, which, again, leaks dB (mod h).

2.5 Invalid curve attacks
The invalid curve attack targets the ECDH protocol with the assumption that the victim
implementation does not check that the point lies on the curve. The attack is then based on
the observation that addition and doubling formulas often do not contain the Weierstrass
parameter b (the addition formulas usually do not contain the parameter a either). This
means that the algorithm for scalar multiplication using these formulas correctly computes
kP for a point P on any curve with the same parameter a.

The victim expects a public key point on a curve E : y2 = x3 + ax + b. The attacker
generates and sends a point PA on a different curve E′ : y2 = x3 + ax + b′, with a small
subgroup of order h. The victim computes the shared secret on the curve E′. Similarly as
in the small subgroup attack, since h is small, the possible values for the derived secret
computed by the victim can be then enumerated. This gives the attacker dB (mod h). The
attacker repeats this for several curves obtaining dB (mod hi) for each hi, until the whole
private key dB is recovered using the Chinese remainder theorem [BMM00; ABM+03].

The degenerate curve attack [NT16] also tricks the victim to perform the ECDH
protocol on a different group. The difference from the invalid curve is that this group is
not an elliptic curve group, rather the multiplicative group of the underlying base field.

2.6 Point compression
To save space, implementations often store and transmit points (public keys or generators)
in compressed form. For any point P , the xP coordinate determines the yP coordinate
up to a sign through the curve equality y2

P = x3
P + axP + b. Hence, the point P can

be represented using xP and a single bit signaling the sign of yP . The X9.62 standard

6 Reverse-engineering side-channel countermeasures of ECC implementations

defines the compressed format specifically as PC|xP , where PC is a single byte with
PC = 2 if the least significant bit of yP is 0 and PC = 3, otherwise. The uncompressed
form is represented as 4|xP |yP , with 4 represented by a single byte and the coordinates
zero-padded to the field length in bytes.

2.7 Side-channel countermeasures
Let us now briefly present several side-channel attack countermeasures important to our
work. Namely, several scalar randomization countermeasures that will be the targets of
our reverse-engineering as well as the use of dummy operations, complete formulas and
point blinding. See [DGH+13] for a detailed overview of this area.
Dummy operations. Some scalar multipliers are not regular, i.e., the sequence of add
and dbl formula applications depends on the processed scalar. A simple double-and-add
multiplier is an example of this. To protect these multipliers from simple power analysis,
dummy operations can be used. This transforms the simple double-and-add multiplier
to double-and-add-always. This has the effect of introducing dummy values in the scalar
multiplication that are not used to compute the final result.
Complete formulas. While complete formulas are not a side-channel countermeasure as
such, they allow simpler exception-less handling of the point at infinity. For example,
avoiding Minerva-style [JSS+20] leakage of the bit-length of the scalar in a side-channel-free
manner is much easier with complete formulas. Furthermore, using complete formulas,
scalar multipliers can safely handle scalars larger than the curve order without issues due
to the potential to reach the point at infinity.
Scalar randomization. There are several side-channel countermeasures that randomize the
scalar used in scalar multiplication. They sample some additional randomness and expand
a single scalar multiplication into several multiplications or a single larger one. Figure 1
shows an overview of the techniques. We consider four popular techniques: group scalar
randomization (GSR) [Cor99], additive [CJ01], multiplicative [TB02], and Euclidean [CJ03]
splitting. Note that the countermeasures have different expansion ratio, the amount and
size of scalar multiplications they expand a single l bit scalar multiplication into. For GSR
and multiplicative splitting, assuming they sample b bits of randomness, the ratios are
l → 1 × (l + b) and l → (1 × b) + (1 × l), respectively. For additive splitting the ratio
is l → 2 × l (i.e., two l bit scalar multiplications). For Euclidean splitting, the ratio is
l→ 3× 1

2 l.
Coordinate and curve randomization. Apart from randomizing the scalar, one can also
randomize the point coordinates, as a single affine point can be represented by many
projective ones. In standard projective coordinates, point P = (X : Y : Z) can be
randomized using λ

$←−F∗
p as (λX : λY : λZ). This works analogously in other coordinate

systems. Similarly, one can randomize computation on a whole curve by taking an isogenous
curve, transferring the computation there, and transferring the result back.
Point blinding. Finally, the point blinding countermeasure, of which there are several
variants, modifies the scalar multiplication of [k]P by adding a random point R to point P
before the start of the multiplication and then subtracts S = [k]R at the end. The points
R and S may be precomputed for a fixed keypair and adjusted after each multiplication.
Some variants of this countermeasure subtract the point S directly during the main scalar
multiplication loop and do not require an additional operation.

3 Related work
There is relatively little work in the area of testing of cryptographic implementations that
is directly related to our approach.

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 7

Group scalar randomization
function Mult(G, k)

r
$←− {0, 1, . . . , 2b}

return [k + rn]G

Additive splitting
function Mult(G, k)

r
$←− Z∗

n

return [k − r]G + [r]G

Euclidean splitting
function Mult(G, k)

r
$←− {0, 1, . . . , 2⌊log2(n)/2⌋}

S ← [r]G
k1 ← k mod r
k2 ←

⌊
k
r

⌋
return [k1]G + [k2]S

Multiplicative splitting
function Mult(G, k)

r
$←− {0, 1, . . . , 2b}

S ← [r]G
return [kr−1 mod n]S

Figure 1: An overview of scalar randomization countermeasures, showing the multiplication
of point G with scalar k while sampling a random mask of b bits.

• Firstly, one may get assurances of security through code review and analysis. However,
this is only applicable in a white-box scenario with available source code, whereas
our approach works also for black-box implementations.

• Secondly, one may perform implementation testing, for example using test-vectors
such as the Wycheproof project [C2S16] or by fuzzing such as the Cryptofuzz
project [Vra19; Moz24]. Our approach in ECTester fits this category. In contrast to
Wycheproof, which recently moved to only focus on aggregating test-vector data, we
support testing many native libraries directly as well as any compatible JavaCards.
The future of the Cryptofuzz project is uncertain, as its original author took down
the repository and only a fork under the Mozilla Security organization is available.

• Thirdly, one can test artifacts produced by the implementation (e.g., keys). This is
the approach taken by Google’s project Paranoid [Goo16] and also in the CurveSwap
work [VSS+18]. Our approach is able to exercise the target implementation and gain
more information on it than possible by purely analyzing its keys.

In the area of reverse-engineering of public key cryptography implementations there
have been some notable examples of both manual and automated reverse-engineering.
Amiel et al. [AFV07] presented a technique for reverse-engineering the word size and
modular multiplication algorithm in RSA implementations. Remarkable examples of
manual reverse-engineering can be found in the “Side Journey to Titan” [RLM+21] and
“EUCLEAK” [Roc24] works, which demonstrate complex attacks on ECC implementations
in real-world hardware.

The recently introduced pyecsca [JSS+24] tool is able to automatically reverse-engineer
ECC implementation details via side-channel attacks. While it targets the scalar multiplier
and addition formulas used by the implementation, its reverse-engineering does not work
in the presence of scalar randomization countermeasures. In contrast, our techniques are
able to reverse-engineer the scalar randomization countermeasures and do not require side-
channel measurements. We utilize the pyecsca toolkit for simulations and demonstration.

4 Methodology
In this section we present our methodology for testing black-box elliptic curve cryptography
implementations using our ECTester tool. We do not discuss the reverse-engineering of
randomization countermeasures in this section and leave it for Section 6.

8 Reverse-engineering side-channel countermeasures of ECC implementations

ECTester
Host

Native
library

Java
library

JNI shim

Custom applet

Card reader

JavaCard

JCA Provider

JCA Provider

Supported libraries
BoringSSL
Botan
BouncyCastle
Crypto++

libgcrypt
LibreSSL
libtomcrypt

Intel Cryptography Primitives

mbedTLS
Nettle
OpenSSL
SunEC

Supported smartcards
Any JavaCard >= 2.2.1

Figure 2: Architecture of the ECTester tool, which is able to interact with ECC implemen-
tations in Java libraries, native libraries through JNI shims, and JavaCards. Targets are
displayed in bold.

4.1 Overview
The ECTester tool comprises of several components, see Figure 2:

Standalone The standalone component focuses on testing ECC libraries, both native and
Java-based ones. It uses the Java Cryptography Architecture (JCA) providers of the
Java-based ECC libraries to interact with them. However, the large variety of native
libraries we target does not offer any common API we could use. Thus, for each
native library we implement a shim using the Java Native Interface (JNI) that uses
the library to offer a common JCA provider interface. The standalone component
offers a unified command-line interface for working with, and testing, the libraries.

Reader The reader component focuses on testing JavaCard-based smartcards. To do so,
it requires that a custom applet (see Applet component bellow) is installed on the
JavaCard. It offers a similar command-line interface as the standalone component.

Applet The applet component contains the applet code that is loaded on tested JavaCards
and provides a rich interface to their ECC implementations. It uses only standard
JavaCard APIs and not the proprietary ones as those are often only available under
a non-disclosure agreement with the card vendor. Since this component is compiled
for JavaCards it needs to conform to the JavaCard subset of Java.

Common The common component contains all of the test data: elliptic curves, points,
private and public keys, signatures, and test results. It also contains common
functionality shared between the reader and standalone components, such as I/O or
test evaluation. It supports test result output in YAML/XML and rich text formats,
allowing for post-processing and further analysis.

Finally, all of the components are complemented by a set of Jupyter notebooks for
data and results analysis as well as visualization. Currently, the tool supports 10 native
libraries and 2 Java ones, listed in Figure 2. Adding additional libraries involves writing
a simple shim which implements a conversion layer between ECTester and the native
library. However, as libraries evolve over time and their API changes, we found that we
need to update these shims to new library versions quite often. Furthermore, the changes
to the shim necessary to make it work with a new library version may not be backwards

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 9

compatible with old library versions. We use the nix tool and nixpkgs repository to enable
testing of historic and current library versions and simplify the library build system.

4.2 Test suites
ECTester contains a wide range of test-suites which we document here. A full listing of
the tests is out-of-scope of this work, but can be found in our repository.

Default: Tests support for ECC and the presence of any default curves on the target.
Given that we also target JavaCards, these might not be present or the target might not
even support ECC. It also tests keypair allocation, generation, ECDH, and ECDSA. ECDH
is first tested with two valid generated keypairs, then with a compressed public key to test
support for valid compressed points.

Test-Vectors: Tests ECDH using known test vectors provided by NIST [Kel11], SECG
[Cer99], and Brainpool [Har13; ML13]. This test-suite also performs a cross-validation test
of ECDH and ECDSA, using the target and validating its output using a bundled version
of the BouncyCastle library.

Compression: Tests support for the compression of public points in ECDH as specified
in ANSI X9.62 including the compressed and hybrid form. Also tests target response to
a hybrid point with a wrong y coordinate and to the point at infinity (as public key in
ECDH). Tests ECDH with an invalid compressed point, where x does not lie on the curve.

Miscellaneous: Tests ECDH and ECDSA over weak curves such as super-singular curves,
anomalous curves, or Barreto-Naehrig curves with small embedding degree and CM
discriminant. Also tests ECDH over MNT curves, M curves, and Curve25519 transformed
into short Weierstrass form.

Signature: Tests ECDSA verification, with well-formed but invalid signatures and a
wide range of malformed signatures. This includes r, s ∈ {0, 1, n}, taking r, s random,
malformed ASN.1 format or a negated public key point. This test suite also tests signature
malleability, i.e., whether a correct signature modified by adding the curve order to one of
the values r, s still verifies.

Wrong: Tests behavior on ill-defined curves with parameters that do not follow the
standard definition of a curve. The base-field is invalid, i.e., the number defining the prime
field is not a prime or the polynomial defining the binary field is reducible. Tests also
include the generator point not on the curve or not a valid affine point. Tests include a
curve where the order or the cofactor is zero or one.

Composite: Tests using various composite order curves, including pseudoprime orders.

Invalid: Tests the invalid curve attack [BMM00; JSS15] using known named curves from
several categories (SECG, NIST, and Brainpool) against pre-generated invalid public keys.
Similar tests are implemented for the Twist curve attack and for the Degenerate curve
attack in respective test-suites.

Cofactor: Tests the small-subgroup attack, i.e., whether the target correctly rejects points
that lie on the curve but not on the subgroup generated by the specified generator during
ECDH. This is done with curves where the cofactor subgroup has small order, then with
curves that have order equal to the product of two large primes. The test sets the generator
with order of one prime and tries points on the subgroup of the other prime order.

Edge-Cases: Tests various inputs to ECDH which may cause an implementation to
achieve a certain edge-case state during ECDH. Some of the data is from Paranoid Crypto
[Goo16] or Wycheproof [C2S16]. Tests include CVE-2017-10176 and CVE-2017-8932 and
an OpenSSL modular reduction bug presented in [BBP+12]. Various custom edge private

10 Reverse-engineering side-channel countermeasures of ECC implementations

key values are also tested. CVE-2017-10176 was in implementation issue in the SunEC
Java library and NSS (CVE-2017-7781), that caused the implementation to reach the point
at infinity during ECDH computation [San17b]. CVE-2017-8932 was an implementation
issue in the Go standard library, in particular its scalar multiplication algorithm on the
P-256 curve which leaked information about the private key [Val17].

5 Results

In this section we present results obtained from running ECTester test-suites on supported
libraries and several JavaCards. We do not include results from every test-suite due to
space and pick only “interesting” results from the point-of-view of an attacker. For an
overview of the tested cards, see Table 1. For an overview of the tested library versions
(and supported versions) see Table 6.

Table 1: Smartcards analyzed in this work. The CPLC column presents the ICFabricator,
ICType, OperatingSystemID, and OperatingSystemReleaseDate values from the smartcard.
ê Manufacturer Model Chip CPLC
N1 NXP JCOP J3A081* P5 4790.5168.4791.0078
N2 NXP JCOP J2D081* P5 4790.5167.4791.0078
N3 NXP JCOP21 J2E145G* P5 4790.5167.4791.2348
N4 NXP JCOP3 J3H145* P60 4790.0503.8211.6351
N6 NXP JCOP4 J3R180* P71 4790.D321.4700.0000
N9 NXP JCOP31 J3A081* P5 4790.5040.4791.8102
I1 Infineon SECORA IDS SLJ52GDT120CS* - 4090.1912.4090.9078
I2 Infineon CJTOP SLJ52GLA080AL* - 4090.7165.544C.2151
A1 Athena IDProtect† AT90 4180.010B.8211.0352
G1 G&D Smartcafe 7.0 - 0005.0056.D001.4212
G2 G&D Smartcafe 6.0† - 4790.5037.1671.1146
S2 TaiSYS SIMoME† - FFFF.FFFF.FFFF.FFFF
F1 Feitian JavaCOS A22 CR* - 4090.7892.86AA.7068
F2 Feitian JavaCOS JC30M48 CR - -

*/† Denotes Common Criteria or FIPS 140 certified smartcards, respectively.

The identification of the chip, or even exact smartcard model, or certification status in
Table 1 presents our best-effort and might contain mis-identifications. Precisely identify-
ing the exact smartcard model and certificate coverage without access to manufacturer
documentation is challenging. We used the sec-certs project to speed-up our search of
certification documents [JJS+24].

5.1 Test-vector failures

We encountered several unexpected test-vector failures in our testing of JavaCards. The A1
card produced a wrong ECDH secret in the brainpoolP512r1 test, as well as the P-521 DHC
test from NIST. Similarly, it failed to produce the correct shared secret on the secp521r1,
brainpoolP512r1, and brainpoolP512t1 curves. The G1 card produced wrong ECDH secrets
on 512-bit curves, yet handled 521-bit ones fine. The G2 card outputs only 20 bytes of the
derived secret if the used keypair was generated on the card, even if the requested ECDH
version is plain (not hashed) and the curve is larger.

https://sec-certs.org/cc/cabd9ee16cc158db/
https://sec-certs.org/cc/cabd9ee16cc158db/
https://sec-certs.org/cc/eee0ba6274ab7c60/
https://sec-certs.org/cc/2d1626d40aa004da/
https://sec-certs.org/cc/f29f88756682e034/
https://sec-certs.org/cc/9d1d7978ad7a3a6f/
https://www.infineon.com/cms/en/product/security-smart-card-solutions/secora-security-solutions/secora-id-security-solutions/slj52glt120cs/
https://www.infineon.com/cms/en/product/security-smart-card-solutions/secora-security-solutions/secora-id-security-solutions/slj52gdaxxxlx/
https://sec-certs.org/fips/f8d64a31eb7d864d/
https://sec-certs.org/fips/cf1881df6f1696c2/
https://sec-certs.org/fips/6b724a6630ccac9a/
https://sec-certs.org/cc/4fdb0afc0bbabfb8/

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 11

5.2 Timing leakage
The ECTester tool was used to discover a group of timing vulnerabilities in ECDSA known
as Minerva [JSS+20]. This shows the versatility of the tool in uncovering diverse issues
like timing attacks which we do not focus on in this work. The functionality of the tool,
with respect to test suites and usability was expanded heavily since then.

5.3 Psychic signatures
The “psychic signatures” bug, named after Doctor Who’s psychic paper, was a bug in
ECDSA verification in Java 15–18 that allowed a signature of r, s both equal to zero to pass
as valid for any message. This bug was discovered in the Java case by Madden [Mad22] in
2022 and found in other cryptocurrency-related ECDSA implementations in 2021 [NCC21].
A test for such a case was present in the Signature test-suite in ECTester since 2018,
however the tool – written in Java – only supported Java 8 at the time. Support for newer
Java versions was added in 2024.

5.4 Domain parameter validation
The Composite test suite tests the set up of elliptic curve parameters with composite order
n. Curves with composite order are vulnerable to the Pohlig-Hellman attack and any
implementation that supports custom curves and wants to avoid it should test primality of
the order or use standard named curves. Column ‘prime n’ in Table 2 shows the results for
twelve popular ECC libraries and thirteen JavaCards. For eleven cards and eight libraries,
we were able to set-up a composite order curve and perform either ECDSA or ECDH. For
the rest, we failed to do so. The results for the A1,G1 and I2 cards agree with the findings
from [SJS20] that both A1, I2 contain some primality tests on n and G1 does not.

Next, we tested the validation of the generator point. Any generator of the prime
subgroup should have prime order n. Since any point on a prime order curve will
be a generator, we selected a curve with cofactor h > 1 that we concealed from the
implementation (i.e., set to h = 1 in the parameters). We set the curve order to n
and tested ECDH and ECDSA with a generator of order nh. Additionally, we used the
secp256r1 curve and changed the claimed prime order n to another prime. We were
successful for all except for two cards (column ord G in Table 2) and for five libraries.
Inspection of the code showed that the three libraries that support custom curves and
rejected the generator (OpenSSL, LibreSSL and Intel Crypto) correctly check the order of
the generator.

5.5 Cofactor validation
The Cofactor test suite tests how implementations deal with public key points in the
wrong subgroup. This is relevant for the Derive subroutine in ECDH and Verify in ECDSA.
We selected curves with cofactor h > 1 and gave the implementations public key points of
an incorrect order nh (the expected public key should have order n). We considered two
options to fully understand the behavior with incorrect options: conceal the cofactor in
the curve specification and pretend that h = 1 or transparently present the true cofactor h.
In the first case, all of the cards except for A1 and G1 accepted the point as well as all of
the libraries that supported custom curves with the addition of libtomcrypt (see Table 2).
The libtomcrypt library (the latest version v1.18.2) did not support cofactor curves, but
it also did not validate that the point is lying on the curve. Hence, a small order point
from a different curve could be used. The lack of the check makes the library vulnerable
to the invalid curve attack. Furthermore we observed that repeated runs on the cards
produced different results. For the fixed input point P of order nh, we were getting results

12 Reverse-engineering side-channel countermeasures of ECC implementations

Table 2: Results of ECTester with invalid parameters on popular libraries and JavaCards.
The symbols ✓, ✗ denote ECTester managed (or failed) to pass a curve with composite
order (prime n) or a public key or generator with invalid order (ord P and ord G).

Card ord P ord G prime n

N1 ✓ ✓ ✓
N2 ✓ ✓ ✓
N3 ✓ ✓ ✓
N4 ✓ ✓ ✓
N6 ✓ ✓ ✓
N9 ✓ ✓ ✓
I1 ✓ ✓ ✓
I2 ✓ ✓ ✗
A1 ✗ ✗ ✗
G1 ✗ ✗ ✓
S2 ✓ ✓ ✓
F1 ✓ ✓ ✓
F2 ✓ ✓ ✓

Library ord P ord G prime n

BoringSSL ✓ ✓ ✓
Botan ✓ ✓ ✓
BouncyCastle ✓ ✓ ✓
Crypto++ ✓ ✓ ✓
Intel Crypto ✓ ✗ ✓
libgcrypt ✗ ✗ ✗
LibreSSL ✓ ✗ ✓
libtomcrypt ✓ ✗ ✗
mbedTLS ✓ ✓ ✓
Nettle ✗ ✗ ✗
OpenSSL ✓ ✗ ✓
SunEC ✗ ✗ ✗

of the form P, P + nP, . . . , P + (h− 1)nP . This pointed to a randomization of the scalar
multiplication that we will explore in the further sections.

Then we repeated the same tests with a point of order nh but with correctly set cofactor
h. Surprisingly, all of the cards continued to accept the point. One explanation might
be that the user is supposed to correctly choose the correct type of ECDH depending on
the cofactor and in case of h > 1 use the Cofactor Diffie-Hellman (CDH) protocol. This
is what we saw in the OpenSSL library, which offers both ECDH and CDH, leaving the
choice up to the user by setting the ecdh-cofactor-mode flag. Crypto++ and Intel Crypto
implement CDH as well and Botan uses the inverse version of CDH to be compatible with
the regular ECDH. BouncyCastle implements the cofactor check, but offers the option to
omit it by setting a corresponding flag for the validation function. MbedTLS states in the
documentation that the cofactor check “is expensive, is not required by standards, and
should not be necessary if the group used has a small cofactor”. For libgcrypt and LibreSSL
we were not able to confidently determine their approach.

Next, we tested the implementations with points of small order h. We observed that
the libraries and cards very often did not successfully finish with a (correct) ECDH secret
given a point of small order as the public key. This is not surprising as when the scalar
is divisible by the order, the result of the scalar multiplication is the infinity point that
cannot be transformed to an affine form and thus an ECDH secret. If the input point P
has order l this happens with probability 1

l given random scalars. This is indeed what we
saw in most of the libraries (Figure 3). However, three libraries, libtomcrypt, BouncyCastle,
mbedTLS had different distributions. For instance, while the rest of the libraries erred in
roughly 1

3 of the cases for points of order 3 and very rarely for points of order 37, mbedTLS
erred almost always for the same points of order 3 and points of order 37.

Closer inspection of BouncyCastle and mbedTLS revealed a simple explanation. Boun-
cyCastle uses the Window-NAF multiplier for scalar multiplication which begins with the
precomputation of the a few small multiples of the input point that are then transformed
to an affine form. Similarly, mbedTLS uses the Comb multiplier with a precomputation.
The transformation to the affine form then causes the errors.

For libtomcrypt, the explanation turned out to be in the formula that is used for point
addition (add-1998-hnm). If either of the input points has the projective z-coordinate
equal to zero then the result satisfies the same regardless of the second points. In particular,

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 13

3 5 7 11 13 17 19 23 29 31 37 41
Input point order

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r r
at

e

Expected distribution
OpenSSL
LibreSSL
Botan
Crypto++
mbedTLS
BouncyCastle
tomcrypt
Intel Crypto

Figure 3: Error distribution of ECDH runs given an input point of low order.

if one of the input points is O (which is defined as x = 0, y = 1, z = 0) then the result
also has z = 0. This means that if such a point appears during the scalar multiplication,
it propagates through the scalar multiplication till the end where the implementation
attempts to transform it to an affine point resulting in an error. Since the input point, say
P , has low order h, very likely a multiple of the point, mP , with m divisible by h appears
during the scalar multiplication. Consequently, the point mP is O which causes the error.

We observed similar behavior with the cards including N1 and N3, though some of the
cards stopped responding and so we did not do further measurements. The frequency
of the errors was significantly higher than the expected 1

l . We concluded that the
implementations on the card suffer from the same problem with incomplete formulas as we
saw in libtomcrypt and they do not handle the infinity point well. Moreover, the errors did
not appear deterministically across multiple measurements with the same input including
a fixed key. This agreed with the observation that some sort of (scalar) randomization is
present on the card that we also saw in the results of the cofactor testing.

As a final note for this part, we will comment on the vulnerability to the small subgroup
attack. It is known that a few bits of a private static ECDH key can be recovered using
this attack. However, the lack of cofactor validation makes the verification of ECDSA
signatures also vulnerable by the following simple attack. To verify a valid ECDSA
signature (r, s) with a corresponding public key Q, one checks that the x-coordinate of the
point s−1H(m)G + s−1rQ is equal to r modulo n. Let T be a point of order 2 (i.e., we
assume that the cofactor is even). Assuming that s−1r is an even number, the point Q + T
will also pass as a public key for the verification of the signature (r, s). We experimentally
confirmed this on the N1, N2, N3, N9, and N4 cards. Attempts on I1, I2 failed, and so
we concluded that the cards have some check (here we did not conceal the cofactor) or
the verification is done in a different way. Note that the lack of cofactor validation for
verification means that the signatures are not bound to the public key Q, i.e., the signature
scheme is not strongly binding as defined in [CGN20].

5.6 n > p overflow
The Edge-Cases test suite revealed that the N4 card did not support all the private keys
from the full interval [1, n− 1] for the secp160r1 curve. This curve has a 160-bit base-field
prime p = 2160 − 231 − 1 and 161-bit order n = p + 1 + t where t has 81 bits. Based
on the tests in the suite, we concluded that the private key must have 160-bits for the
implementation to accept it. This results in a small bias as the values from the interval
[2160, n− 1] are never used. Assuming that the implementation applies the same limit on
the signature nonces, this would lead to systematic nonce leakage of 1 bit, though with
the negligible probability smaller than 2−79.

14 Reverse-engineering side-channel countermeasures of ECC implementations

6 Reverse-engineering scalar randomization
ECTester results on JavaCards presented in the previous section show that the tested
cards usually do not validate the domain parameters and the public point. Incorrect order
of the curve, cofactor, or generator with a wrong order can be passed to the card and used
in ECC protocols implemented on the card. Observation of the test results already gave
us evidence of side-channel countermeasures such as scalar randomization or improper
handling of the infinity point. In this section, we push these ideas further and design
methods for reverse-engineering of scalar randomization countermeasures (and random
mask sizes and values) based on the behavior of the implementation under invalid inputs.

We will target a scalar multiplication kP using an unknown multiplier, where P is
a point (either the generator for KeyGen and Sign or the public key point for Derive)
and k is the used scalar (either the nonce or the private key). The computation of kP
is randomized by an unknown scalar randomization ρ. We denote the randomization as
ρ(k, P), where under valid inputs ρ(k, P) = kP . We will assume that k and P are either
known or can be set, but this will depend on the individual tests presented below. Finally,
we will assume that ρ is one of the scalar randomization techniques described in Section 2.7.
We will also briefly comment on the point blinding at the end of this section.

The general idea is to set up the curve and the point P such that ρ(k, P) ̸= kP and the
value of ρ(k, P) leaks information about the randomization ρ. This will very often require
to conceal the true subgroup order n and the cofactor h from the implementation. We
will denote n, h, G, and P the claimed (possibly incorrect) order, cofactor, generator, and
public key, respectively. Table 3 summarizes the setting of the parameters for our tests.

Table 3: Setting of ECC parameters for our reverse-engineering of scalar randomization.
Test Target |E(Fp)| n∗ n h ord(G) ord(P) k

3n
Derive 3n ✓ n 1 n 3n fixed
Sign/Keygen 3n n any

composite Derive
n ✗ n 1 n n

fixed
Sign/Keygen any

k = 10 Derive n ✓ n 1 n n 10

n + ϵ
Derive

n ✗ prime n + ϵ 1 n n
fixed

Sign/Keygen any
EPA Derive 373n ✓ n 1 n 373 fixed

* Denotes whether n is a prime or not.

Table 4: Behavior of our tests with the common scalar randomization techniques.
Test Mask GSR Additive split Euclidean split Multiplicative split None
3n 1

3 , 1
3 , 1

3
1
2 , 1

2 , 0 1, 0, 0 5
9 , 2

9 , 2
9 1, 0, 0

composite 100% 100% 100% < 100%† 100%
k = 10 < 100%∗ 100% < 100%∗ 100% 100%

n + ϵ
size Yes No No Yes -

value 100% - - ≈ 10% -
EPA > 0 > 0 > 0 > 0 0

* Depends on the scalar multiplier.
† Depends on the field inversion algorithm.

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 15

6.1 Test 3n

The test uses an elliptic curve of order 3n, where n is a large prime, and an input point P
of order 3n. We will show that ρ(k, P) = kP + snP for s ∈ {0, 1, 2} for each of the scalar
randomization technique ρ. More importantly, the distribution of s is different for each
technique ρ, giving us a unique fingerprint for each of them. The test will do multiple
measurements and output the distribution (three probabilities for the three possible values
of s). This measured distribution is then compared with the theoretical distributions that
we will now derive. The summary of the theoretical distributions is shown in Table 4.

For GSR, ρ(k, P) = (k + rn)P = (k + sn)P , where s is equal to r (mod 3) and thus
uniformly sampled from {0, 1, 2}, i.e., each with probability 1

3 . For the additive splitting,
ρ(k, P) = (k − r)P + rP . If k > r then ρ(k, P) = kP . In the opposite case, the negative
scalar (k− r) is reduced modulo n and ρ(k, P) = (k +n)P . Assuming k ∼ n ∼ r, these two
cases should happen with 1

2 probability each. It could also be the case that the negative
integer (k − r) is not reduced (and perhaps the sign of P is changed instead), in which
case ρ(k, P) would be always kP . The Euclidean splitting does not use the value of the
order n in any way and so ρ(k, P) = kP .

Finally, the multiplicative split will satisfy ρ(k, P) = k′rP , where k′ = kr−1 (mod n)
and r−1 is the inverse of r mod n. For some integer t, we can write ρ(k, P) = (kr−1 +tn)rP .
Since P has order 3n, ρ(k, P) = kP +snP for s ∈ {0, 1, 2}, where s satisfies (kr−1 + tn)r =
k + sn (mod 3). Since r is a random integer, all three values r, r−1 and t follow a
uniform distribution modulo 3. Assuming that k (mod 3) is fixed, (kr−1 + tn) follows this
distribution as well. Then the distribution of the product (kr−1 + tn)r, and consequently
of s, is 0, 1, 2 with probabilities 5

9 , 2
9 , 2

9 , respectively. Note that this holds for a fixed k
(mod 3) and so for Keygen and Sign, the nonce and private key must be grouped based on
the value of k (mod 3) when observing the distribution.

6.2 Test composite
We can use a composite order curve to detect the inversion r−1 (mod n) computed in
the multiplicative splitting randomization, but not others. If r and n share a nontrivial
factor, the computation of r−1 (mod n) can then either lead to an infinite loop, an error,
or an undefined value, as the inverse does not exist. If the extended Euclidean algorithm
is used, then the result will be incorrect or produce an error with probability ϕ(n)

n . If the
Fermat’s little theorem is used with r−1 = rn−2 (mod n) then it is unlikely that any of
the inversions will be correct, though errors are not expected. Hence, the measurement
is repeated and the output of the test is the rate of successful results. The rest of the
countermeasures do not use the primality of the order, and so they will have a 100%
success rate. A success rate lower than 100% is indicative of the multiplicative splitting.

Beware that in Sign this test will detect the inversion of the nonce. To determine
whether we are detecting any further inversions (in the multiplicative splitting), we have
to consider the expected frequency of errors and compare them with the measurements.

Note that the frequency of the errors can be adjusted for both inversion algorithms. To
modify the error rate of the inversion using Fermat’s little theorem, we can use Carmichael
numbers that will satisfy rn−2 = r−1 (mod n) if and only if r and n are coprime. The
probability of error is then the same as for the Euclidean algorithm: ϕ(n)

n . By selecting n
with a different number of factors we can increase or decrease the probability.

6.3 Test k = 10
This test is designed for Derive with key k = 10 to detect the GSR countermeasure,
where ρ(k, P) = (k + rn)P = (10 + rn)P . Simulations with the pyecsca tool showed that
scalar multipliers tend to compute rnP as an intermediate value while building up the

16 Reverse-engineering side-channel countermeasures of ECC implementations

resulting 10P + rnP . Naturally, this tends to happen for any small k. This can lead to
an error if the implementation does not handle rnP = O well. At the same time, other
countermeasures do not use scalars larger than n and are therefore unlikely to cause a
similar error. The only assumption of this test is that we can fix k = 10 and so this can be
set up on any curve including secp256r1, which we used. The result of the test is the rate
of the correctly computed shared secrets. However, not every multiplier has to cross the
point rnP and so a 100% success rate does not necessarily mean that GSR is not present
in the implementation. Other small scalars can be used to increase the confidence.

6.4 Test n + ϵ

The n+ϵ test is aimed at reverse-engineering the randomization mask used in GSR or in the
multiplicative splitting. It works under the assumption that the random mask r is sampled
from [1, 2b] where b is much smaller than log2(n). The idea is to set a curve with order n
and claim a different order n + ϵ for small ϵ, where n + ϵ is a prime to pass any primality
test. The GSR randomization then computes ρ(k, P) = (k + r(n + ϵ)) = (k + rϵ)P = dP ,
where d = k + rϵ (mod n) and P has order n. Since r is significantly smaller than n then
the equality d = k + rϵ holds over integers, giving us also the mask as r = d−k

ϵ . The only
unknown (besides the mask) is the discrete logarithm d of ρ(k, P) with respect to P . If we
set a weak curve with composite n, we can easily find the discrete logarithm d and find the
mask r. We used a curve with order n equal to a product of 32-bit primes. Note that we
need access to the result point (k + ϵr)P , which holds for Keygen, Sign, and plain Derive
where the point can be recovered from the shared secret.

The multiplicative splitting behaves with the n + ϵ test in the following way. The
randomization is ρ(k, P) = k′rP , where k′r = k (mod n + ϵ). The last modular equality
can be written as k′r = k + t(n + ϵ) for some integer t. We estimate the size of t by
comparing the sizes of both sides of the equality. Specifically, k′r ∼ tn where k′ < n + ϵ
and so t is expected to be smaller than r and consequently significantly smaller than n.
If we find the discrete logarithm d of k′rP with respect to P , we get d = k′r = k + ϵt
(mod n). Both k and d are smaller than n and tϵ is smaller than n (here we use the
assumption on the size of r and t), and so the equality d = k + ϵt holds in the integers. We
can then compute t = d−k

ϵ . The size of t alone gives us a reasonable guess on the size of r
as on average k′ ∼ n, and so r should be only slightly larger than t. To recover the value
of r, we need to use the fact that r divides k + t(n + ϵ). We factor k + t(n + ϵ) and look
for all divisors of similar size as t. Unfortunately, this only gives us a set of candidates
for r that cannot be verified. To understand how often we can expect to have just one
candidate, we simulated this test for different sizes of the mask r in the range that we saw
in the cards: 32, 64, 96, 128, and 160 bits. The probability of a single candidate for r was
10%, 9.8%, 7.2%, 8.4% and 7.8%, respectively for individual bit-lengths of r. Hence, to
collect a single mask value, it is expected to be enough to do 13 measurements.

The reason why n + ϵ is chosen as a prime is to pass any primality tests the implemen-
tation can have on the order. Other conditions can be imposed on the value as well. For
instance, take the case of the implementation of Derive that does not check order primality
but checks that the generator vanishes when multiplied by the claimed order n + ϵ. We
can then select ϵ such that n + ϵ and n share a factor f and set G as any point of order f .
Such a generator will pass the check and the rest of the method remains the same.

6.5 Test EPA
The last test leverages the observation of ECTester that a point of small order can be
passed to the implementations leading to errors during the scalar multiplication. The
occurrence of the errors depends on the scalar and changes with each randomization. Two
runs of the same algorithm with the same setting (including a fixed scalar), one with an

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 17

error and the other without, is clear evidence of randomization. As the input point P , we
select a point of small order l so that the point lP = O sporadically appears during the
scalar multiplication regardless of the multiplier, causing an error. Nevertheless, one might
accidentally select a point of order l that always/never causes an error for some multipliers
so it is better to use several points of different orders. Formally, we will define the result
of the test to be the variance in the measured boolean output (error or no error). Nonzero
variance indicates that a scalar randomization is present. The opposite (zero variance)
does not necessarily mean a lack of randomization. The implementation can handle the
infinity point well as discussed in Section 5. Another possibility is that the number of
measurements or the number of used points was not enough to detect a small variance.
This test is applicable only to Derive as Sign and Keygen contain randomization by design
(generation of nonces and private keys). Note that the name of the test comes from the
Exceptional Procedure Attack by Izu and Takagi [IT03] which in the same principle invokes
errors in the scalar multiplication to gain information about the private key.

Remark. The presented tests were designed to distinguish the behavior of different scalar
randomization techniques. All of the tests use correctly defined points on the claimed
curve (Table 3) and use their order to leak information about the techniques. This is
invariant under the coordinate and curve randomization. Hence, the tests will work
even if these countermeasures are implemented together with the scalar randomization.
Similarly, the point blinding, as described in Section 2.7, uses random points on the curve
for randomization and not the order n or the cofactor. For any set up of the tests, ρ(k, P)
will always correctly compute kP under point blinding and so our tests will be unaffected
by point blinding as well. The exception is the EPA test which uses exceptional points of
the formulas to produce points not on the curve and consequently errors. The EPA test
can reveal point blinding with the same principle as with the scalar randomization.

6.6 Scalar randomization on JavaCard smartcards
Table 5 presents the results of our reverse-engineering tests on thirteen JavaCard smartcards.
Overall we managed to reverse-engineer the scalar randomization on every tested card
except for A1, which refused the inputs of all five tests. On most of the cards, we managed
to recover the randomization technique for all three functions, Derive, Sign, and Keygen,
which turned out to all use the same technique. On six of the cards, we recovered the value
of the randomization mask. We intentionally did not run all the tests on all the cards to
avoid breaking the cards when the randomization technique was already clear, as some
of the tests were likely triggering internal fault attack detection mechanisms that were
disabling the cards. This was mainly the case of test composite and test EPA. Tests 3n
and n + ϵ, which on their own were often able to recover the randomization technique and
the mask, were causing no errors. Overall, we disabled only four cards during the testing.

Most of the cards use GSR, as the results of test 3n follow the uniform distribution
1
3 , 1

3 , 1
3 distribution (recall Table 4). The GSR was also confirmed by the k = 10 test on

four cards. N4 uses multiplicative splitting as it exhibits the 5
9 , 2

9 , 2
9 distribution. There

was also evidence of the multiplicative splitting on G1 by the composite test, but the errors
did not appear close to the expected frequency and so the result was not conclusive.

The test 3n also showed that S2 and F2 do not use scalar randomization at all. EPA
test measured high-frequency errors for F2 and N1. In the case of F2, they were constant for
fixed inputs, which confirmed no randomization. On N1 the errors were non-deterministic,
changing for fixed inputs, confirming the existence of randomization. For both N1 and
F2, the errors appeared more frequently than the expected distribution, i.e., for points of
order l = 3 or l = 5 the errors appeared almost always and not with the probability 1

l . As
discussed in Section 5 this points to improper handling of the infinity point. On S2 the
errors appeared with the expected probability 1

l .

18 Reverse-engineering side-channel countermeasures of ECC implementations

Table 5: Results of our reverse-engineering of scalar randomization on JavaCards.
Card Target 3n Composite k = 10 EPA ρ Mask

N1
Derive 0.34, 0.33, 0.32 100% 86% >0 GSR ✗

Sign 0.31, 0.31, 0.38 83% - GSR 160
Keygen 0.32, 0.33, 0.35 100% - GSR 160

N2
Derive 0.37, 0.33, 0.30 100% 98% GSR ✗

Sign 0.37, 0.31, 0.31 83% - GSR 160
Keygen 0.35, 0.35, 0.31 100% - GSR 160

N3
Derive 0.33, 0.32, 0.35 100% 98% GSR 32
Sign 0.31, 0.30, 0.39 85% - GSR 160

Keygen ✗ ✗ - ✗ ✗

N4
Derive 0.22, 0.56, 0.22 82% 100% Mult 64
Sign 0.23, 0.23, 0.54 - - Mult ?

Keygen ✗ ✗ - ✗ ✗

N6
Derive 0, 0, 1 100% 100% ⊏⊐ Euc.? 2
Sign 0, 0.52, 0.48 71% - Euc.? 2

Keygen 0, 0.51, 0.49 100% - Euc.? 2

N9
Derive 0.32, 0.34, 0.35 100% 99% GSR ✗

Sign 0.29, 0.35, 0.35 84% - GSR 160
Keygen 0.34, 0.33, 0.32 100% - GSR 160

I1
Derive 0.37, 0.32, 0.31 100% 100% GSR ✗

Sign 0.30, 0.33, 0.37 92% - GSR ✗

Keygen 0.35, 0.30, 0.35 100% - GSR ✗

I2
Derive 0.31, 0.36, 0.33 ✗ 100% GSR ✗

Sign 0.32, 0.32, 0.36 ✗ - GSR 64
Keygen 0.32, 0.33, 0.35 ✗ - GSR 32

A1
Derive ✗ ✗ 100% ✗ ✗

Sign ✗ ✗ - ✗ ✗

Keygen ✗ ✗ - ✗ ✗

G1
Derive ✗ 99% 100% Mult ✗

Sign ✗ ✗ - ✗ ✗

Keygen ✗ ✗ - ✗ ✗

S2
Derive 1, 0, 0 100% 100% 0 None -
Sign 1, 0, 0 80% - None -

Keygen ⊏⊐ ⊏⊐ ⊏⊐ ⊏⊐ ⊏⊐ ⊏⊐

F1
Derive 0.33, 0.34, 0.33 100% 100% GSR ✗

Sign 0.33, 0.33, 0.35 78% - GSR ✗

Keygen 0.34, 0.31, 0.36 100% - GSR ✗

F2
Derive 1, 0, 0 100% 100% 0 None -
Sign ✗ ✗ - ✗ ✗

Keygen ✗ ✗ - ✗ ✗

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 19

The results of test 3n on N6 point to either Euclidean splitting or no scalar randomization
at all. Furthermore, the n + ϵ mask recovery revealed the implementation adds n to the
scalar if the scalar is odd and adds 2n otherwise. Initial runs of the EPA test on Derive
showed some evidence of randomization, but the card soon stopped responding. We
concluded that it is most likely the Euclidean splitting, but further measurements would
be needed for a definitive answer.

Apart from N6, our tests disabled one N3, one N4 and one S2 card. The symbol ⊏⊐ in
Table 5 denotes that the card stopped responding before we had a chance to run the test.
Mask recovery. For N1, N2, N3, N4, N9 and I2, we recovered the value of the randomization
mask using the n + ϵ test for both the GSR and the multiplicative splitting. The sizes of
the masks were the expected 32 and 64 bits (a trade-off between security and efficiency)
as well as 160 bits. One explanation for a 160-bit mask is that many standard curves have
orders n with special form close to a power of two. GSR blinding with rn for small r might
not mask the whole scalar as shown in [FRV14].

Note that on I2 and N3 the sizes of the mask differed between the different functions.
The n + ϵ test failed on Sign on N4 for unknown reasons that might be worth investigating
further. The 3n test shows that multiplicative splitting is used on this card. Recall that if
k is the used nonce, d is the discrete logarithm between the generator G and the output
point kG then d = k + ϵt for some integer t of size similar to the size of the mask. Using
this equality, we can recover t and then use it to get the candidate set for the mask. This
approach was successful in Derive and showed that the mask has 64 bits. However, for
Sign, the term d− k = 92t turned out to be a large 256-bit number and often not divisible
by 92, making the equality incorrect in this case. Yet, the results showed some signal as
d− k was divisible by 92 much more often than a random integer (roughly 12% of time).
Perhaps the multiplicative splitting was combined with some other countermeasure that
we were not able to recover.

7 Impact, limitations and discussion

Impact. Our findings have impacts on several levels. First, it is now possible to mount the
learning phase of profiled attacks on black-box ECC targets using scalar randomization via
our mask recovery techniques if the targets allow the setting of custom domain parameters.
This is the case for the JavaCard platform, as we demonstrated reverse-engineering and
mask recovery on several certified smartcards. The learning phase will have to be performed
on a different (non-standard) curve than the attack phase, but the curve can be made
similar to the target one (same prime, same a parameter). Second, knowledge of scalar
randomization countermeasures can no longer be assumed secret in security evaluations
of JavaCard smartcards unless they also mitigate the reverse-engineering techniques,
including the ones listed in this paper. This may impact the JIL attack rating of certified
(or to be certified) products [JIL]. Finally, our findings open up possibilities for more
reverse-engineering. Perhaps it is possible to reverse-engineer scalar multipliers even if
scalar randomization countermeasures are present.
Limitations. While we managed to recover the scalar randomization on almost all of
the cards, several of the tests failed. In some cases, the cards explicitly validated the
parameters (e.g., the primality of the order). In others, the implementation errored out on
invalid inputs and gave us no meaningful information. Moreover, some of the cards likely
have an internal fault detection, as repeated errors caused the cards to stop responding
temporarily or even permanently. We encountered this behavior for the composite and
EPA tests, but not for the 3n and n + ϵ tests.

The n + ϵ test is capable of fully recovering the mask value for GSR. However, for the
multiplicative splitting, the test only offers a set of candidates, any of which can be the

20 Reverse-engineering side-channel countermeasures of ECC implementations

true masking value. In roughly 10% of the cases, there is only one (true) candidate.
One of the main limitations of our work is the presence of a combination of countermea-

sures. We have designed individual tests to distinguish the four main scalar randomization
techniques. Any implementation that uses two or more together may fool our tests. This
might have been the case of the results on N4 with Sign. The 3n test indicated the
multiplicative splitting, but the n + ϵ test gave nonsensical results for the mask.

We have implemented countermeasures composed of two scalar randomization tech-
niques (their precise description can be found in our repository) using pyecsca. This
amounted to 15 combinations since for each pair of the four main techniques, there were
more than one possible way to combine them. This by no means is meant to be an
exhaustive list and only aims to provide a better understanding of our limitations and to
possibly open up paths for future work. We ran test 3n, test composite and test k = 10 on
each combination with the results in Table 7 in the appendix. The results of test 3n on each
combination of techniques corresponded to the expected result on one of the techniques.
For instance, the test on all three combinations of GSR and the multiplicative splitting
(GM-1, GM-2, GM-3) output the distribution 2

9 , 2
9 , 5

9 , which is the expected distribution for
the multiplicative splitting. There were two exceptions though. First, one combination of
the additive and multiplicative splitting slightly deviated from 2

9 , 2
9 , 5

9 . Closer examination
showed that it rather follows the distribution 8

27 , 8
27 , 11

27 . Second, one combination of GSR
and Euclidean splitting followed the distribution 2

9 , 2
9 , 5

9 . In all combinations, the composite
test correctly identified the presence of the multiplicative splitting. Hence, the combination
of these two tests would either signal that the implementation does not contain one simple
technique or would at least identify one of them. Surprisingly, the results of test k = 10
did not follow any clear pattern.

Mitigations. Our reverse-engineering methods are observing the behavior of the imple-
mentations under invalid inputs. An obvious countermeasure is proper validation of the
domain parameters and the inputs, as suggested in [SJS20]. Both the prime p defining
the base field and the prime field order n need to be verified by a primality test to avoid
composite order curves. The generator G and any point must be checked that they belong
on the curve and their order is n. The correct way to do so is to multiply and compare
nG = O. Since n is prime, this implies that G must have the correct order, and the curve
truly contains a subgroup of order n. The order of the public key points should be verified
as well to avoid any points outside of the main subgroup. Other solutions to cofactor
validation, like cofactor Diffie-Hellman or the inverse trick, rely on the assumption that
the claimed cofactor is correct. This precise assumption by implementations is violated by
our inputs and made most of our tests work. Specifically, tests 3n, n + ϵ, and composite
concealed the true cofactor, used points outside of the claimed group, and composite curve
order n. When implemented, the mentioned checks would make these tests ineffective.

Primality testing and domain parameter validation of custom curves come with a high
cost in performance. A clear solution is to restrict the API to standard named curves.
Such curves will not contain any hidden small subgroups. Not only does this avoid any
costly checks, these curves are optimized for higher performance. Popular examples are
the prime order NIST curves or the cofactor curves Curve25519 and Ed25519. Note that
this needs to be a strict limitation on an API level and not just an option (as is the case
for JavaCard API since version 3.1), as an attacker will simply opt for optional setting of
custom domain parameters to make our techniques work.

The EPA and k = 10 tests relied on improper handling of the infinity point by the
target during scalar multiplication. Not every formula computing point addition P + Q
is prepared for special cases like P = ±Q or P = O, which results in an undefined
output that causes an error. One solution is for the implementation to check for these
special cases and solve them separately. This might involve dummy operations to preserve
constant-time execution. A more straightforward, and secure, solution is to use complete

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 21

formulas [RCB16]. Note that even these formulas contain exceptional points that are
outside of the main subgroup, and so they must be used together with cofactor validation.

We would like to stress that the mitigations described above will only thwart methods
presented in this paper and in their current form. Reverse engineering of countermeasures,
in general, likely cannot be fully prevented, as evidenced also by the Side Journey to Titan
[RLM+21] and EUCLEAK papers [Roc24]. The assumption that implementation details
can be kept secret relies on security by obscurity in contrary to Kerckhoff’s principle. While
obscurity typically increases the difficulty of mounting an attack in the short term due to an
additional layer of uncertainty about the implementation, it also decreases availability for
public scrutiny. The lack of public audits is possibly harming the security in the long run –
a timeframe especially relevant for cryptographic smartcards used as, e.g., electronic IDs
with the expected lifetime of a decade or more. The advent of open-source cryptographic
hardware designs like LowRISC’s OpenTitan [Ope] or TropicSquare’s TROPIC01 [Tro]
may offer interesting tests of the feasibility of open-source secure hardware design.

Acknowledgements
We would like to thank Thomas Roche for his insightful comments and discussion. Jan
Jancar was supported by Red Hat Czech. J. Jancar, V. Suchanek, P. Svenda, and Ł.
Chmielewski were supported by the AI-SecTools (VJ02010010) project.

References
[ABM+03] Adrian Antipa, Daniel R. L. Brown, Alfred Menezes, René Struik, and Scott A.

Vanstone. Validation of elliptic curve public keys. In Yvo Desmedt, editor,
Public Key Cryptography - PKC 2003, 6th International Workshop on Theory
and Practice in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003,
Proceedings, volume 2567 of Lecture Notes in Computer Science, pages 211–
223. Springer, 2003. doi: 10.1007/3-540-36288-6_16.

[AFV07] Frédéric Amiel, Benoit Feix, and Karine Villegas. Power analysis for secret
recovering and reverse engineering of public key algorithms. In Carlisle M.
Adams, Ali Miri, and Michael J. Wiener, editors, Selected Areas in Cryptogra-
phy, 14th International Workshop, SAC 2007, Ottawa, Canada, August 16-17,
2007, Revised Selected Papers, volume 4876 of Lecture Notes in Computer Sci-
ence, pages 110–125. Springer, 2007. doi: 10.1007/978-3-540-77360-3_8.

[ANSI05] ANSI. American National Standard X9.62-2005, Public key cryptography for
the financial services industry: the elliptic curve digital signature algorithm
(ECDSA). Standard, Accredited Standards Committee X9, 2005.

[BBP+12] Billy Bob Brumley, Manuel Barbosa, Dan Page, and Frederik Vercauteren.
Practical realisation and elimination of an ECC-related software bug attack.
In Orr Dunkelman, editor, Topics in Cryptology - CT-RSA 2012 - The
Cryptographers’ Track at the RSA Conference 2012, San Francisco, CA, USA,
February 27 - March 2, 2012. Proceedings, volume 7178 of Lecture Notes in
Computer Science, pages 171–186. Springer, 2012. doi: 10.1007/978-3-642-
27954-6_11.

[BL07] Daniel J. Bernstein and Tanja Lange. Explicit-formulas database. 2007. url:
https://hyperelliptic.org/EFD/ (visited on 07/10/2024).

[BL17] Daniel J. Bernstein and Tanja Lange. Safecurves: choosing safe curves for
elliptic-curve cryptography. January 2017. url: https://safecurves.cr.
yp.to/ (visited on 04/06/2025).

https://doi.org/10.1007/3-540-36288-6_16
https://doi.org/10.1007/978-3-540-77360-3_8
https://doi.org/10.1007/978-3-642-27954-6_11
https://doi.org/10.1007/978-3-642-27954-6_11
https://hyperelliptic.org/EFD/
https://safecurves.cr.yp.to/
https://safecurves.cr.yp.to/

22 Reverse-engineering side-channel countermeasures of ECC implementations

[BL24] Daniel J. Bernstein and Tanja Lange. Safe curves for elliptic-curve cryptog-
raphy. IACR Cryptol. ePrint Arch.:1265, 2024. url: https://eprint.iacr.
org/2024/1265.

[BMM00] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault attacks on
elliptic curve cryptosystems. In Mihir Bellare, editor, Advances in Cryptology
- CRYPTO 2000, 20th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 2000, Proceedings, volume 1880
of Lecture Notes in Computer Science, pages 131–146. Springer, 2000. doi:
10.1007/3-540-44598-6_8.

[C2S16] C2SP. Wycheproof, 2016. url: https://github.com/C2SP/wycheproof
(visited on 05/20/2024).

[CC] Common Criteria. ISO/IEC 15408 Information technology — Security tech-
niques — Evaluation criteria for IT security. In ISO/IEC 15408-1:2022.
ISO/IEC, 2022.

[Cer99] Certicom Research. Test vectors for SEC 1. Standards for Efficient Cryptog-
raphy Group, 1999. url: http://rfc.nop.hu/secg/gec2.pdf (visited on
02/20/2025).

[CGN20] Konstantinos Chalkias, François Garillot, and Valeria Nikolaenko. Taming
the many EdDSAs. In Thyla van der Merwe, Chris J. Mitchell, and Maryam
Mehrnezhad, editors, Security Standardisation Research - 6th International
Conference, SSR 2020, London, UK, November 30 - December 1, 2020, Pro-
ceedings, volume 12529 of Lecture Notes in Computer Science, pages 67–90.
Springer, 2020. doi: 10.1007/978-3-030-64357-7_4.

[CJ01] Christophe Clavier and Marc Joye. Universal exponentiation algorithm. In
Çetin Kaya Koç, David Naccache, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2001, Third International Workshop,
Paris, France, May 14-16, 2001, Proceedings, volume 2162 of Lecture Notes
in Computer Science, pages 300–308. Springer, 2001. doi: 10.1007/3-540-
44709-1_25.

[CJ03] Mathieu Ciet and Marc Joye. (virtually) free randomization techniques for
elliptic curve cryptography. In Sihan Qing, Dieter Gollmann, and Jianying
Zhou, editors, Information and Communications Security, 5th International
Conference, ICICS 2003, Huhehaote, China, October 10-13, 2003, Proceedings,
volume 2836 of Lecture Notes in Computer Science, pages 348–359. Springer,
2003. doi: 10.1007/978-3-540-39927-8_32.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. In Çetin Kaya Koç and Christof Paar, editors, Cryp-
tographic Hardware and Embedded Systems, First International Workshop,
CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717
of Lecture Notes in Computer Science, pages 292–302. Springer, 1999. doi:
10.1007/3-540-48059-5_25.

[DGH+13] Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica, and
David Naccache. A synthesis of side-channel attacks on elliptic curve cryptog-
raphy in smart-cards. J. Cryptogr. Eng., 3(4):241–265, 2013. doi: 10.1007/
S13389-013-0062-6.

[FLR+08] Pierre-Alain Fouque, Reynald Lercier, Denis Réal, and Frédéric Valette. Fault
attack on elliptic curve montgomery ladder implementation. In 2008 5th
Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 92–98,
2008. doi: 10.1109/FDTC.2008.15.

https://eprint.iacr.org/2024/1265
https://eprint.iacr.org/2024/1265
https://doi.org/10.1007/3-540-44598-6_8
https://github.com/C2SP/wycheproof
http://rfc.nop.hu/secg/gec2.pdf
https://doi.org/10.1007/978-3-030-64357-7_4
https://doi.org/10.1007/3-540-44709-1_25
https://doi.org/10.1007/3-540-44709-1_25
https://doi.org/10.1007/978-3-540-39927-8_32
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/S13389-013-0062-6
https://doi.org/10.1007/S13389-013-0062-6
https://doi.org/10.1109/FDTC.2008.15

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 23

[FRV14] Benoit Feix, Mylène Roussellet, and Alexandre Venelli. Side-channel anal-
ysis on blinded regular scalar multiplications. In Willi Meier and Debdeep
Mukhopadhyay, editors, Progress in Cryptology - INDOCRYPT 2014 - 15th
International Conference on Cryptology in India, New Delhi, India, December
14-17, 2014, Proceedings, volume 8885 of Lecture Notes in Computer Science,
pages 3–20. Springer, 2014. doi: 10.1007/978-3-319-13039-2_1.

[Goo16] Google. Paranoid crypto, 2016. url: https://github.com/google/paranoid_
crypto (visited on 05/20/2024).

[Har13] Dan Harkins. RFC 6932: Brainpool elliptic curves for the internet key exchange
(IKE) group description registry, 2013.

[HMV04] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to elliptic
curve cryptography. Springer Professional Computing. Springer, 2004. isbn:
978-0-387-95273-4. doi: 10.1007/b97644.

[IEEE00] IEEE. IEEE Standard Specifications for Public-Key Cryptography. Standard,
IEEE Std 1363-2000 Working Group, 2000.

[IT03] Tetsuya Izu and Tsuyoshi Takagi. Exceptional procedure attack on elliptic
curve cryptosystems. In Yvo Desmedt, editor, Public Key Cryptography -
PKC 2003, 6th International Workshop on Theory and Practice in Public Key
Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings, volume 2567
of Lecture Notes in Computer Science, pages 224–239. Springer, 2003. doi:
10.1007/3-540-36288-6_17.

[JIL] Senior Official Group Information Systems Security. Application of Attack
Potential to Smartcards and Similar Devices. Joint Interpretation Library,
November 2022. url: https://www.sogis.eu/documents/cc/domains/sc/
JIL-Application-of-Attack-Potential-to-Smartcards-v3.2.pdf.

[JJS+24] Adam Janovsky, Jan Jancar, Petr Svenda, Lukasz Chmielewski, Jiri Michalik,
and Vashek Matyas. sec-certs: Examining the security certification practice
for better vulnerability mitigation. Comput. Secur., 143:103895, 2024. doi:
10.1016/J.COSE.2024.103895.

[JSS+20] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek Sýs. Minerva: The
curse of ECDSA nonces; Systematic analysis of lattice attacks on noisy leakage
of bit-length of ECDSA nonces. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2020(4):281–308, 2020. doi: 10.13154/TCHES.V2020.I4.281-308.

[JSS+24] Jan Jancar, Vojtech Suchanek, Petr Svenda, Vladimir Sedlacek, and Lukasz
Chmielewski. pyecsca: Reverse engineering black-box elliptic curve cryptogra-
phy via side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2024(4):355–381, 2024. doi: 10.46586/TCHES.V2024.I4.355-381.

[JSS15] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. Practical invalid curve
attacks on TLS-ECDH. In Günther Pernul, Peter Y. A. Ryan, and Edgar
R. Weippl, editors, Computer Security - ESORICS 2015 - 20th European
Symposium on Research in Computer Security, Vienna, Austria, September
21-25, 2015, Proceedings, Part I, volume 9326 of Lecture Notes in Computer
Science, pages 407–425. Springer, 2015. doi: 10.1007/978-3-319-24174-
6_21.

[Kel11] Sharon S Keller. The elliptic curve cryptography cofactor Diffie-Hellman
(ECC CDH) primitive validation system (ECC_CDHVS). NIST Information
Technology Laboratory, 2011. url: https://csrc.nist.gov/csrc/media/
projects/cryptographic-algorithm-validation-program/documents/
components/ecccdhvs.pdf.

https://doi.org/10.1007/978-3-319-13039-2_1
https://github.com/google/paranoid_crypto
https://github.com/google/paranoid_crypto
https://doi.org/10.1007/b97644
https://doi.org/10.1007/3-540-36288-6_17
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3.2.pdf
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3.2.pdf
https://doi.org/10.1016/J.COSE.2024.103895
https://doi.org/10.13154/TCHES.V2020.I4.281-308
https://doi.org/10.46586/TCHES.V2024.I4.355-381
https://doi.org/10.1007/978-3-319-24174-6_21
https://doi.org/10.1007/978-3-319-24174-6_21
https://csrc.nist.gov/csrc/media/projects/cryptographic-algorithm-validation-program/documents/components/ecccdhvs.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-algorithm-validation-program/documents/components/ecccdhvs.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-algorithm-validation-program/documents/components/ecccdhvs.pdf

24 Reverse-engineering side-channel countermeasures of ECC implementations

[LL97a] Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-
based schemes using a prime order subgroup. In Burton S. Kaliski Jr., editor,
Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings,
volume 1294 of Lecture Notes in Computer Science, pages 249–263. Springer,
1997. doi: 10.1007/BFB0052240.

[LL97b] Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete
log-based schemes using a prime order subgroup. In Advances in Cryptol-
ogy—CRYPTO’97: 17th Annual International Cryptology Conference Santa
Barbara, California, USA August 17–21, 1997 Proceedings 17, pages 249–263.
Springer, 1997.

[Mad22] Neil Madden. Psychic signatures in java. 2022. url: https://neilmadden.
blog/2022/04/19/psychic-signatures-in-java/ (visited on 04/03/2025).

[ML13] Johannes Merkle and Manfred Lochter. RFC 7027: Elliptic curve cryptography
(ECC) Brainpool curves for transport layer security (TLS), 2013.

[Moz24] Mozilla Security. Cryptofuzz. https://github.com/MozillaSecurity/
cryptofuzz, 2024. (Visited on 04/01/2025).

[MVO91] Alfred Menezes, Scott A. Vanstone, and Tatsuaki Okamoto. Reducing elliptic
curve logarithms to logarithms in a finite field. In Cris Koutsougeras and
Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA,
pages 80–89. ACM, 1991. doi: 10.1145/103418.103434.

[NCC21] NCC Group. Arbitrary signature forgery in Stark Bank ECDSA libraries.
https://www.nccgroup.com/us/research-blog/technical-advisory-
arbitrary-signature-forgery-in-stark-bank-ecdsa-libraries-cve-
2021-43572-cve-2021-43570-cve-2021-43569-cve-2021-43568-cve-
2021-43571/, 2021. (Visited on 04/08/2025).

[Ngu17] Quan Nguyen. Practical cryptanalysis of JSON web token and Galois counter
mode’s implementations, 2017. url: https://research.google/pubs/
practical-cryptanalysis-of-json-web-token-and-galois-counter-
modes-implementations/. Presented on the Real World Cryptography 2017
conference.

[Ngu21] Quan Thoi Minh Nguyen. 0. IACR Cryptol. ePrint Arch.:323, 2021. url:
https://eprint.iacr.org/2021/323.

[NIST18] NIST. SP 800-56A Rev. 3: Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography. Standard, National Insti-
tute for Standards and Technology, April 2018. url: https://doi.org/10.
6028/NIST.SP.800-56Ar3.

[NIST23] NIST. SP 800-186: Recommendations for Discrete Logarithm-based Cryptog-
raphy: Elliptic Curve Domain Parameters. Standard, National Institute for
Standards and Technology, February 2023. url: https://doi.org/10.6028/
NIST.SP.800-186.

[NT16] Samuel Neves and Mehdi Tibouchi. Degenerate curve attacks - extending
invalid curve attacks to edwards curves and other models. In Chen-Mou Cheng,
Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, Public-Key
Cryptography - PKC 2016 - 19th IACR International Conference on Practice
and Theory in Public-Key Cryptography, Taipei, Taiwan, March 6-9, 2016,
Proceedings, Part II, volume 9615 of Lecture Notes in Computer Science,
pages 19–35. Springer, 2016. doi: 10.1007/978-3-662-49387-8_2.

https://doi.org/10.1007/BFB0052240
https://neilmadden.blog/2022/04/19/psychic-signatures-in-java/
https://neilmadden.blog/2022/04/19/psychic-signatures-in-java/
https://github.com/MozillaSecurity/cryptofuzz
https://github.com/MozillaSecurity/cryptofuzz
https://doi.org/10.1145/103418.103434
https://www.nccgroup.com/us/research-blog/technical-advisory-arbitrary-signature-forgery-in-stark-bank-ecdsa-libraries-cve-2021-43572-cve-2021-43570-cve-2021-43569-cve-2021-43568-cve-2021-43571/
https://www.nccgroup.com/us/research-blog/technical-advisory-arbitrary-signature-forgery-in-stark-bank-ecdsa-libraries-cve-2021-43572-cve-2021-43570-cve-2021-43569-cve-2021-43568-cve-2021-43571/
https://www.nccgroup.com/us/research-blog/technical-advisory-arbitrary-signature-forgery-in-stark-bank-ecdsa-libraries-cve-2021-43572-cve-2021-43570-cve-2021-43569-cve-2021-43568-cve-2021-43571/
https://www.nccgroup.com/us/research-blog/technical-advisory-arbitrary-signature-forgery-in-stark-bank-ecdsa-libraries-cve-2021-43572-cve-2021-43570-cve-2021-43569-cve-2021-43568-cve-2021-43571/
https://research.google/pubs/practical-cryptanalysis-of-json-web-token-and-galois-counter-modes-implementations/
https://research.google/pubs/practical-cryptanalysis-of-json-web-token-and-galois-counter-modes-implementations/
https://research.google/pubs/practical-cryptanalysis-of-json-web-token-and-galois-counter-modes-implementations/
https://eprint.iacr.org/2021/323
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-186
https://doi.org/10.6028/NIST.SP.800-186
https://doi.org/10.1007/978-3-662-49387-8_2

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 25

[Ope] OpenTitan. Open source silicon root of trust (rot). url: https://opentitan.
org/ (visited on 04/15/2025).

[PH78] Stephen Pohlig and Martin Hellman. An improved algorithm for computing
logarithms over GF (p) and its cryptographic significance. IEEE Transactions
on Information Theory, 24(1):106–110, January 1978. doi: 10.1109/TIT.
1978.1055817.

[RCB16] Joost Renes, Craig Costello, and Lejla Batina. Complete addition formulas for
prime order elliptic curves. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of Lecture
Notes in Computer Science, pages 403–428. Springer, 2016. doi: 10.1007/978-
3-662-49890-3_16.

[RLM+21] Thomas Roche, Victor Lomné, Camille Mutschler, and Laurent Imbert. A
side journey to Titan. In Michael D. Bailey and Rachel Greenstadt, editors,
30th USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, pages 231–248. USENIX Association, 2021. url: https://www.usenix.
org/conference/usenixsecurity21/presentation/roche.

[Roc24] Thomas Roche. EUCLEAK. IACR Cryptol. ePrint Arch.:1380, 2024. url:
https://eprint.iacr.org/2024/1380.

[San17a] Antonio Sanso. Critical vulnerability in JSON web encryption (JWE). https:
//blog.intothesymmetry.com/2017/03/critical-vulnerability-in-
json-web.html, 2017. (Visited on 04/08/2025).

[San17b] Antonio Sanso. CVE-2017-7781/CVE-2017-10176: issue with elliptic curve
addition in mixed Jacobian-affine coordinates in Firefox/Java, 2017. url:
https://blog.intothesymmetry.com/2017/08/cve-2017-7781cve-2017-
10176-issue-with.html (visited on 04/08/2025).

[SEC09] SECG. SEC 1: Elliptic Curve Cryptography. Standard, Standards for Efficient
Cryptography Group, May 2009. url: http://www.secg.org/sec1-v2.pdf.

[Sem98] Igor A. Semaev. Evaluation of discrete logarithms in a group of p-torsion
points of an elliptic curve in characteristic p. Math. Comput., 67(221):353–356,
1998. doi: 10.1090/S0025-5718-98-00887-4.

[SJS20] Vladimir Sedlacek, Jan Jancar, and Petr Svenda. Fooling primality tests on
smartcards. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider,
editors, Computer Security - ESORICS 2020 - 25th European Symposium on
Research in Computer Security, ESORICS 2020, Guildford, UK, September
14-18, 2020, Proceedings, Part II, volume 12309 of Lecture Notes in Computer
Science, pages 209–229. Springer, 2020. doi: 10.1007/978-3-030-59013-
0_11.

[Sma99] Nigel P. Smart. The discrete logarithm problem on elliptic curves of trace
one. J. Cryptol., 12(3):193–196, 1999. doi: 10.1007/S001459900052.

[TA98] Satoh T. and Kiyomichi Araki. Fermat quotients and the polynomial time
discrete log algorithm for anomalous elliptic curves. Commentarii Math. Univ.
St. Pauli., 47:81–92, 1998. issn: 0010258X. url: https://cir.nii.ac.jp/
crid/1570009752659281152.

https://opentitan.org/
https://opentitan.org/
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-662-49890-3_16
https://www.usenix.org/conference/usenixsecurity21/presentation/roche
https://www.usenix.org/conference/usenixsecurity21/presentation/roche
https://eprint.iacr.org/2024/1380
https://blog.intothesymmetry.com/2017/03/critical-vulnerability-in-json-web.html
https://blog.intothesymmetry.com/2017/03/critical-vulnerability-in-json-web.html
https://blog.intothesymmetry.com/2017/03/critical-vulnerability-in-json-web.html
https://blog.intothesymmetry.com/2017/08/cve-2017-7781cve-2017-10176-issue-with.html
https://blog.intothesymmetry.com/2017/08/cve-2017-7781cve-2017-10176-issue-with.html
http://www.secg.org/sec1-v2.pdf
https://doi.org/10.1090/S0025-5718-98-00887-4
https://doi.org/10.1007/978-3-030-59013-0_11
https://doi.org/10.1007/978-3-030-59013-0_11
https://doi.org/10.1007/S001459900052
https://cir.nii.ac.jp/crid/1570009752659281152
https://cir.nii.ac.jp/crid/1570009752659281152

26 Reverse-engineering side-channel countermeasures of ECC implementations

[TB02] Elena Trichina and Antonio Bellezza. Implementation of elliptic curve cryptog-
raphy with built-in counter measures against side channel attacks. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 98–113. Springer, 2002. doi:
10.1007/3-540-36400-5_9.

[Tro] TropicSquare. Tropic Square. url: https://tropicsquare.com/ (visited on
04/15/2025).

[Val17] Filippo Valsorda. Squeezing a key through a carry bit, 2017. url: https://
fahrplan.events.ccc.de/congress/2017/Fahrplan/events/9021.html
(visited on 04/08/2025).

[Vra19] Guido Vranken. Cryptofuzz, 2019. url: https://github.com/guidovranken/
cryptofuzz (visited on 05/20/2024).

[VSS+18] Luke Valenta, Nick Sullivan, Antonio Sanso, and Nadia Heninger. In search
of curveswap: measuring elliptic curve implementations in the wild. In 2018
IEEE European Symposium on Security and Privacy, EuroS&P 2018, London,
United Kingdom, April 24-26, 2018, pages 384–398. IEEE, 2018. doi: 10.
1109/EUROSP.2018.00034.

https://doi.org/10.1007/3-540-36400-5_9
https://tropicsquare.com/
https://fahrplan.events.ccc.de/congress/2017/Fahrplan/events/9021.html
https://fahrplan.events.ccc.de/congress/2017/Fahrplan/events/9021.html
https://github.com/guidovranken/cryptofuzz
https://github.com/guidovranken/cryptofuzz
https://doi.org/10.1109/EUROSP.2018.00034
https://doi.org/10.1109/EUROSP.2018.00034

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda and Łukasz Chmielewski 27

Appendix

Table 6: The version ranges of libraries currently supported by ECTester. The third
column shows the versions used for the results presented in this paper. As BoringSSL is
not versioned we test roughly every 40th commit, for about 100 times, from the most
recent one. For libgcrypt the version 1.9.0 is suggested not to be used and thus is not
supported. Reasons for unsupported versions are usually API-breaking changes in the
library or unresolved issues during the build of the library or shim. For some versions,
these issues may be resolvable with extra effort.

Library Supported versions Evaluated version
BoringSSL r76bb141–r2eb2889, rde43457–r2be18f5 r67422ed
Botan 2.0.0–2.19.5 2.19.1
BouncyCastle 1.69–1.80 1.77
Crypto++ 6.1.0–8.9.0 8.6.0
Intel Crypto 2020–2021.2, 2021.5–2021.12.1 2021.7
libgcrypt 1.8.0–1.10.3 1.9.4
LibreSSL 2.6.2–4.0.0 3.9.0
libtomcrypt 1.18.0-rc4–1.18.2 1.18.2
mbedTLS 2.7.19–3.6.2 3.5.2
Nettle 3.1.1, 3.{4, 5, 8}.1, 3.7.{1, 2, 3} 3.7.3
OpenSSL 1.1.0–1.1.0j, 1.1.1–3.4.1 3.2.0-dev
SunEC OpenJDK 15–23 17

Table 7: The results of our reverse-engineering tests on the combinations of scalar ran-
domization techniques. The precise description of the algorithms can be found in our
repository. Each algorithm is labeled XY-N, where X,Y are the first letters of the four used
techniques (GSR, Additive, Multiplicative and Euclidean splitting) and N is a numerical
identifier. Individual algorithms were implemented and simulated using pyecsca.

Combination Test 3n Test composite Test k = 10
GA-1 1

3 , 1
3 , 1

3 100% 100%
GA-2 1

3 , 1
3 , 1

3 100% 100%
GM-1 2

9 , 2
9 , 5

9 91% 100%
GM-2 2

9 , 2
9 , 5

9 91% 100%
GM-3 2

9 , 2
9 , 5

9 91% 100%
GE-1 1

3 , 1
3 , 1

3 100% 100%
GE-2 2

9 , 2
9 , 5

9 100% 0%
GE-3 1

3 , 1
3 , 1

3 100% 0%
GE-4 1

3 , 1
3 , 1

3 100% 0%
AM-1 8

27 , 8
27 , 11

27 84% 100%
AM-2 2

9 , 2
9 , 5

9 90% 100%
AE-1 1

2 , 1
2 , 0 100% 100%

AE-2 1
3 , 1

3 , 1
3 100% 100%

ME-1 2
9 , 2

9 , 5
9 91% 46%

ME-2 2
9 , 2

9 , 5
9 84% 0%

	Introduction
	Background
	Weak curves
	ECC protocols
	Public key validation
	Small subgroup attacks
	Invalid curve attacks
	Point compression
	Side-channel countermeasures

	Related work
	Methodology
	Overview
	Test suites

	Results
	Test-vector failures
	Timing leakage
	Psychic signatures
	Domain parameter validation
	Cofactor validation
	n > p overflow

	Reverse-engineering scalar randomization
	Test 3n
	Test composite
	Test k = 10
	Test n + e
	Test EPA
	Scalar randomization on JavaCard smartcards

	Impact, limitations and discussion

