ECTester: Reverse-engineering side-channel countermeasures of ECC implementations

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda, Łukasz Chmielewski

Vibe of the talk

• Implementations of elliptic curve cryptography (ECC)

$$E: y^2 = x^3 + ax + b$$

$$[k]P = P + \dots + P$$

ECDH secret: Hash([k]P)

Vibe of the talk

• Implementations of elliptic curve cryptography (ECC)

• ECTester: toolkit for a black-box testing of ECC implementations

Vibe of the talk

• Implementations of elliptic curve cryptography (ECC)

$$E: y^2 = x^3 + ax + b$$

$$[k]P = P + \dots + P$$

ECDH secret: Hash([k]P)

ECTester: toolkit for a black-box testing of ECC implementations

 Lying to JavaCards to reverse-engineer (RE) randomization techniques protecting a secret scalar.

&\$#%&

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis. CHES 2024.

Motivation:

- Side-channel attacks on ECC often assume a white-box attacker
- Real-world implementations of ECC are usually black-box (smartcards, HSM, TPM, or crypto-wallets)

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis. CHES 2024.

Results:

- Analysis of 18 open-source libraries showed a variety of implementation decisions
 - Elliptic curve E
 - Coordinate representation of points P ∈ E
 - Addition formulas for P + Q
 - Scalar multiplier for [k]P

. . .

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis. CHES 2024.

Results:

- Analysis of 18 open-source libraries showed a variety of implementation decisions
- \bullet Enumeration of the space of ECC implementations yielded > 139 489 possibilities \Rightarrow hard to guess!
- pyecsca toolkit for automatic RE of the scalar multiplier and the coordinate system

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis. CHES 2024.

Limitations:

- Assumes that we can set the domain parameters
- Scalar randomization breaks the RE methods
- Not demonstrated on real-world black-box devices

Currently at CHES 2025

ECTester: Reverse-engineering side-channel countermeasures of ECC implementations. CHES 2025.

Contributions:

- ECTester: toolkit for testing ECC libraries and JavaCards
- Techniques for RE of scalar randomization countermeasures without side-channel measurements
- RE of countermeasures on 13 JavaCards certified under CC or FIPS 140

ECTester

• crocs-muni/ECTester

ECTester

$$E/\mathbb{F}_{p}: y^{2} = x^{3} + ax + b$$

$$P \in E, \quad k < n$$

$$\#E = n \cdot \text{cofactor}$$

$$Q = [k]P$$

ECTester tests:

- Invalid curve attack
- Small subgroup attack
- Malformed signatures
- Composite curve order
- Anomalous curves, supersingular curves

. . .

$$P \in E$$

ord $(P) = n$
 $r, s \neq 0$
 n is prime
 $p \notin \{\#E - 1, \#E\}$

8

ECTester: testing input validation

6 1			
Card or	rd P	ord G	prime <i>n</i>
NXP 1	√	√	√
NXP 2	\checkmark	\checkmark	\checkmark
NXP 3	\checkmark	\checkmark	\checkmark
NXP 4	\checkmark	\checkmark	\checkmark
NXP 6	\checkmark	\checkmark	\checkmark
NXP 9	\checkmark	\checkmark	\checkmark
Infineon 1	\checkmark	\checkmark	\checkmark
Infineon 2	\checkmark	\checkmark	X
Athena	X	X	X
G&D	X	X	\checkmark
TaiSYS	\checkmark	\checkmark	\checkmark
Feitian 1	\checkmark	\checkmark	\checkmark
Feitian 2	/	/	./

 $[\]sqrt{\ }$ success, X = fail to pass validation with invalid parameters

Reverse-engineering using invalid parameters

Reverse-engineering using invalid parameters

Reverse-engineering using invalid parameters

- ullet The scalar randomization $k\mapsto
 ho(k)$ prohibits side-channel attacks and RE
- \bullet Can we RE the randomization algorithm ρ
- Can we recover the random mask used for $\rho(k)$?

Usual suspects

Group scalar randomization

function
$$MULT(P, k)$$

 $r \stackrel{\$}{\leftarrow} \{0, 1, \dots, 2^b\}$
return $[k + rn]P$

Additive splitting

function
$$MULT(P, k)$$

$$r \stackrel{\$}{\leftarrow} \mathbb{Z}_n^*$$
return $[k - r]P + [r]P$

Euclidean splitting

function
$$MULT(P, k)$$

 $r \stackrel{\$}{\leftarrow} \{0, \dots, 2^{\lfloor \log_2(n)/2 \rfloor}\}$
 $S \leftarrow [r]P$
 $k_1 \leftarrow k \mod r$
 $k_2 \leftarrow \lfloor \frac{k}{r} \rfloor$
return $[k_1]P + [k_2]S$

Multiplicative splitting

function
$$MULT(P, k)$$

 $r \stackrel{\$}{\leftarrow} \{0, 1, \dots, 2^b\}$
 $S \leftarrow [r]P$
return $[kr^{-1} \mod n]S$

$$E/\mathbb{F}_{p}: y^{2} = x^{3} + ax + b \longrightarrow Q$$

$$P \in E, \quad k < n$$

$$\#E = n \cdot \text{cofactor}$$

$$Q = [\rho(k)]P = [k]P$$

• GSR:
$$[\rho(k)]P = [k + rn]P \in \{[k]P, [k + n]P, [k + 2n]P\}$$
 with prob. dist. $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$

$$E/\mathbb{F}_p: y^2 = x^3 + ax + b \longrightarrow Q$$

$$P \in E, \quad k < n$$

$$\#E = n \cdot \text{cofactor}$$

$$Q = [\rho(k)]P = [k]P$$

- GSR: $[\rho(k)]P = [k + rn]P \in \{[k]P, [k + n]P, [k + 2n]P\}$ with prob. dist. $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
- Multiplicative: $\frac{2}{9}, \frac{2}{9}, \frac{5}{9}$

$$E/\mathbb{F}_p: y^2 = x^3 + ax + b \longrightarrow P \in E, \quad k < n \\ \#E = n \cdot \text{cofactor} \qquad k \mapsto \rho(k) \\ Q = [\rho(k)]P = [k]P$$

- GSR: $[\rho(k)]P = [k + rn]P \in \{[k]P, [k + n]P, [k + 2n]P\}$ with prob. dist. $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
- Multiplicative: $\frac{2}{9}, \frac{2}{9}, \frac{5}{9}$
- Euclidean: 1, 0, 0

$$E/\mathbb{F}_p: y^2 = x^3 + ax + b \longrightarrow P \in E, \quad k < n \\ \#E = n \cdot \text{cofactor} \qquad k \mapsto \rho(k) \\ Q = [\rho(k)]P = [k]P$$

- GSR: $[\rho(k)]P = [k + rn]P \in \{[k]P, [k + n]P, [k + 2n]P\}$ with prob. dist. $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
- Multiplicative: $\frac{2}{9}, \frac{2}{9}, \frac{5}{9}$
- Euclidean: 1, 0, 0
- Additive: $\frac{1}{2}$, $\frac{1}{2}$, 0

$$E/\mathbb{F}_{p}: y^{2} = x^{3} + ax + b \longrightarrow Q$$

$$P \in E, \quad k < n$$

$$\#E = n \cdot \text{cofactor}$$

$$Q = [k + rn]P = [k]P$$

•
$$Q = [k + r(n + \epsilon)]P = [k + r\epsilon]P$$

- $Q = [k + r(n + \epsilon)]P = [k + r\epsilon]P$
- Solve the discrete logarithm problem for P,Q to find $d=k+r\epsilon$

- $Q = [k + r(n + \epsilon)]P = [k + r\epsilon]P$
- Solve the discrete logarithm problem for P,Q to find $d=k+r\epsilon$
- Simply compute $r = \frac{d-k}{\epsilon}$

RE results

Card	Target	3 <i>n</i>	Composite	k = 10	EPA	ρ	Mask
NXP 1	Derive	0.34, 0.33, 0.32	100%	86%	0خ	GSR	X
	Sign	0.31, 0.31, 0.38	83%	-		GSR	160
	Keygen	0.32, 0.33, 0.35	100%	-		GSR	160
NXP 3	Derive	0.33, 0.32, 0.35	100%	98%		GSR	32
	Sign	0.31, 0.30, 0.39	85%	-		GSR	160
	Keygen	×	×	-		×	X
NXP 4	Derive	0.22, 0.56, 0.22	82%	100%		Mult	64
	Sign	0.23, 0.23, 0.54	-	-		Mult	?
	Keygen	×	X	-		×	X
NXP 6	Derive	0, 0, 1	100%	100%		Euc.?	2
	Sign	0, 0.52, 0.48	71%	-		Euc.?	2
	Keygen	0, 0.51, 0.49	100%	-		Euc.?	2

* Scalar randomization countermeasures are no longer secret under our RE techniques

- Scalar randomization countermeasures are no longer secret under our RE techniques
- ***** We can mount the learning phase of profiled attacks via Test $n + \epsilon$

- Scalar randomization countermeasures are no longer secret under our RE techniques
- ***** We can mount the learning phase of profiled attacks via Test $n + \epsilon$
- * Path to RE of the scalar multiplier with scalar randomization

- Scalar randomization countermeasures are no longer secret under our RE techniques
- ***** We can mount the learning phase of profiled attacks via Test $n + \epsilon$
- ♣ Path to RE of the scalar multiplier with scalar randomization
- ▲ Cards with proper validation or internal fault detection

- Scalar randomization countermeasures are no longer secret under our RE techniques
- ***** We can mount the learning phase of profiled attacks via Test $n+\epsilon$
- * Path to RE of the scalar multiplier with scalar randomization
- ▲ Cards with proper validation or internal fault detection
- Combination of countermeasures

- Scalar randomization countermeasures are no longer secret under our RE techniques
- ***** We can mount the learning phase of profiled attacks via Test $n+\epsilon$
- * Path to RE of the scalar multiplier with scalar randomization
- ▲ Cards with proper validation or internal fault detection
- Combination of countermeasures
- Proper validation comes with a high cost

- Scalar randomization countermeasures are no longer secret under our RE techniques
- ***** We can mount the learning phase of profiled attacks via Test $n + \epsilon$
- * Path to RE of the scalar multiplier with scalar randomization
- ▲ Cards with proper validation or internal fault detection
- ▲ Combination of countermeasures
- Proper validation comes with a high cost
- Restrict API to standard named curves

Stay tuned for episode 3!

Thank you!

Explore our tools Come grab a sticker after the talk!

pyecsca.org

crocs.fi.muni.cz