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o ECTester: toolkit for a black-box testing of ECC implementations
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e Lying to JavaCards to reverse-engineer (RE) randomization techniques protecting
a secret scalar.
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Previously at CHES 2024 ...

& pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel
analysis. CHES 2024.

Motivation:

& Side-channel attacks on ECC often assume a white-box attacker

@ Real-world implementations of ECC are usually black-box (smartcards, HSM,
TPM, or crypto-wallets)
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Results:
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Previously at CHES 2024 ...

& pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel
analysis. CHES 2024.

Results:

e Analysis of 18 open-source libraries showed a variety of implementation decisions

e Enumeration of the space of ECC implementations yielded > 139489 possibilities
= hard to guess!

e pyecsca toolkit for automatic RE of the scalar multiplier and the coordinate
system



Previously at CHES 2024 ...

& pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel
analysis. CHES 2024.

Limitations:
e Assumes that we can set the domain parameters

e Scalar randomization breaks the RE methods

e Not demonstrated on real-world black-box devices



Currently at CHES 2025

® ECTester: Reverse-engineering side-channel countermeasures of ECC
implementations. CHES 2025.

Contributions:

o ECTester: toolkit for testing ECC libraries and JavaCards

e Techniques for RE of scalar randomization countermeasures without side-channel
measurements

o RE of countermeasures on 13 JavaCards certified under CC or FIPS 140



ECTester

Host «
ECTester — oo
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: Native ;1 Java ! | JavaCard |
' library i 1 library | Custom applet

) crocs-muni/ECTester

Supported libraries

BoringSSL
Botan
BouncyCastle
Crypto++
Intel Cryptography Primitives
libgcrypt
LibreSSL
libtomcrypt
mbedTLS
Nettle
OpenSSL
SuneC

Supported smartcards
Any JavaCard >= 221


https://github.com/crocs-muni/ECTester

ECTester

E/F,:y?>=x3+ax+b

&

P € Ev k <n
#E = n - cofactor Q = [K]P
ECTester tests:
e Invalid curve attack PeE
e Small subgroup attack ord(P)=n
e Malformed signatures r,s #0
e Composite curve order nis prime

e Anomalous curves, supersingular curves p ¢ {#E —1,#E}



ECTester: testing input validation

Card ord P ord G primen Library ord P ord G primen
NXP 1 v v v BoringSSL v v v
NXP 2 v v v Botan v v v
NXP 3 v v v BouncyCastle v v v
NXP 4 v v v Crypto++ v v v
NXP 6 v v v Intel Crypto v X v
NXP 9 v v v libgcrypt X X X

Infineon 1 v v v LibreSSL v X v
Infineon 2 v v X libtomcrypt v X X
Athena X X X mbedTLS v v v

G&D X X v Nettle X X X

TaiSYS v v v OpenSSL v X v
Feitian 1 v v v SunEC X X X
Feitian 2 v v v

v = success, X= fail to pass validation with invalid parameters



Reverse-engineering using invalid parameters
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Reverse-engineering using invalid parameters

E/Fp:y2:X3—|—ax—|—b

PeE, k<n .’—> Q

#E = n - cofactor k — p(k
= [p(K)IP = [k]P

e The scalar randomization k — p(k) prohibits side-channel attacks and RE
e Can we RE the randomization algorithm p

e Can we recover the random mask used for p(k)?
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Usual suspects

Group scalar randomization

function MuLT(P, k)
r<{0,1,...,2°}
return [k + rn]P

Additive splitting
function MuLT(P, k)
$ %
r < 7j
return [k — r|P + [r]P

Euclidean splitting

function MuLT(P, k)
r & {0,...,2leea(n/2y
S« [r]P
ki <+ k mod r
ke [ ¥]
return [ki|P + [k2]S

Multiplicative splitting
function MuLT(P, k)
re{0,1,...,2°}
S« [r]P
return [kr~! mod n]S
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Test 3n: reverse-engineering p

E/Fp:yzzx3+ax+b

PcE, k<n .’_’ @

#E = n - cofactor k — p(k
= [p(K)]P = [k]P

Test 3n: Select a curve with #2E = 3n, a point P of order 3n and claim cofactor=1
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Test 3n: reverse-engineering p

E/Fp:yzzx3+ax+b
PEE, k<n .’—’ Q
#E = n - cofactor k — p(k

= [p(k)]P = [k]P

Test 3n: Select a curve with #2E = 3n, a point P of order 3n and claim cofactor=1

* GSR: [p(k)]P = [k + m]P € {[K|P, [k + n]P, [k +2n] P} with prob. dist. §, 3,3

e Multiplicative: §, 5,3

e Euclidean: 1,0,0
e Additive: 1,10
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Test n + e: recovering the mask

E/F,:y?>=x3+ax+b
PecE, k<n
#E = n - cofactor k— k+rn

Q = [k + m]|P = [k]P

&

Test n+ e: Select a curve with composite n, point P of order n and claim #E = n+e.
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Test n + e: recovering the mask

E/F,:y?>=x3+ax+b
PeE, k<n
#E = n - cofactor k— k+rn

Q = [k + m]|P = [k]P

&

Test n+ e: Select a curve with composite n, point P of order n and claim #E = n+e.

e Q=[k+r(n+¢€)]P=[k+re]P
e Solve the discrete logarithm problem for P, @ to find d = k + re

: _ d—k
e Simply compute r = =
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RE results

Card | Target 3n Composite k=10 EPA p Mask
Derive  0.34,0.33,0.32 100% 86% i0 GSR X
NXP 1 | Sign  0.31,0.31,0.38 83% - GSR 160
Keygen 0.32,0.33,0.35 100% - GSR 160
Derive  0.33,0.32,0.35 100% 98% GSR 32
NXP 3 | Sign  0.31,0.30,0.39 85% - GSR 160
Keygen X X - X X
Derive  0.22,0.56,0.22 82% 100% Mult 64
NXP 4 | Sign  0.23,0.23,0.54 - ; Mult 7
Keygen X X - X X
Derive 0,0,1 100% 100% O | Euc? 2
NXP 6 Sign 0,0.52,0.48 71% - Euc.? 2
Keygen 0,0.51,0.49 100% - Euc.? 2
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Impact, limitations and discussion

¥ Scalar randomization countermeasures are no longer secret under our RE
techniques
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Impact, limitations and discussion

¥ Scalar randomization countermeasures are no longer secret under our RE

techniques

We can mount the learning phase of profiled attacks via Test n+ €
Path to RE of the scalar multiplier with scalar randomization
Cards with proper validation or internal fault detection
Combination of countermeasures

Proper validation comes with a high cost

e @ > > ¥ ¥

Restrict APl to standard named curves

Stay tuned for episode 3!
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Thank you!

Explore our tools

Come grab a sticker after the talk!

m pyecsca EC 'I"e:ste.r

pyecsca.org ) crocs-muni/ECTester

CR&CS

crocs.fi.muni.cz
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