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Vibe of the talk

• Implementations of elliptic curve cryptography (ECC)

E : y2 = x3 + ax + b

[k]P = P + · · ·+ P
ECDH secret: Hash([k]P)

• ECTester: toolkit for a black-box testing of ECC implementations

&$#%&

• Lying to JavaCards to reverse-engineer (RE) randomization techniques protecting

a secret scalar.

&$#%&
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Previously at CHES 2024 ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel

analysis. CHES 2024.

Motivation:

Side-channel attacks on ECC often assume a white-box attacker

Real-world implementations of ECC are usually black-box (smartcards, HSM,

TPM, or crypto-wallets)
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Previously at CHES 2024 ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel

analysis. CHES 2024.

Results:

• Analysis of 18 open-source libraries showed a variety of implementation decisions

• Elliptic curve E

• Coordinate representation of points P ∈ E

• Addition formulas for P + Q

• Scalar multiplier for [k]P

. . .
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Previously at CHES 2024 ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel

analysis. CHES 2024.

Results:

• Analysis of 18 open-source libraries showed a variety of implementation decisions

• Enumeration of the space of ECC implementations yielded > 139 489 possibilities

⇒ hard to guess!

• pyecsca toolkit for automatic RE of the scalar multiplier and the coordinate

system
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Previously at CHES 2024 ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel

analysis. CHES 2024.

Limitations:

• Assumes that we can set the domain parameters

• Scalar randomization breaks the RE methods

• Not demonstrated on real-world black-box devices
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Currently at CHES 2025

ECTester: Reverse-engineering side-channel countermeasures of ECC

implementations. CHES 2025.

Contributions:

• ECTester: toolkit for testing ECC libraries and JavaCards

• Techniques for RE of scalar randomization countermeasures without side-channel

measurements

• RE of countermeasures on 13 JavaCards certified under CC or FIPS 140
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ECTester

ECTester
Host

Native
library

Java
library

JNI shim

Custom applet

Card reader

JavaCard

JCA Provider

JCA Provider

Supported libraries
BoringSSL
Botan
BouncyCastle
Crypto++

libgcrypt
LibreSSL
libtomcrypt

Intel Cryptography Primitives

mbedTLS
Nettle
OpenSSL
SunEC

Supported smartcards
Any JavaCard >= 2.2.1

� crocs-muni/ECTester
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https://github.com/crocs-muni/ECTester


ECTester

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

Q = [k]P

ECTester tests:

• Invalid curve attack

• Small subgroup attack

• Malformed signatures

• Composite curve order

• Anomalous curves, supersingular curves

. . .

P ∈ E

ord(P) = n

r , s ̸= 0

n is prime

p /∈ {#E − 1,#E}
. . .
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ECTester: testing input validation

Card ord P ord G prime n

NXP 1 ✓ ✓ ✓

NXP 2 ✓ ✓ ✓

NXP 3 ✓ ✓ ✓

NXP 4 ✓ ✓ ✓

NXP 6 ✓ ✓ ✓

NXP 9 ✓ ✓ ✓

Infineon 1 ✓ ✓ ✓

Infineon 2 ✓ ✓ ✗

Athena ✗ ✗ ✗

G&D ✗ ✗ ✓

TaiSYS ✓ ✓ ✓

Feitian 1 ✓ ✓ ✓

Feitian 2 ✓ ✓ ✓

Library ord P ord G prime n

BoringSSL ✓ ✓ ✓

Botan ✓ ✓ ✓

BouncyCastle ✓ ✓ ✓

Crypto++ ✓ ✓ ✓

Intel Crypto ✓ ✗ ✓

libgcrypt ✗ ✗ ✗

LibreSSL ✓ ✗ ✓

libtomcrypt ✓ ✗ ✗

mbedTLS ✓ ✓ ✓

Nettle ✗ ✗ ✗

OpenSSL ✓ ✗ ✓

SunEC ✗ ✗ ✗

✓= success, ✗= fail to pass validation with invalid parameters
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Reverse-engineering using invalid parameters

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

Q = [k]P

The scalar randomization k 7→ ρ(k) prohibits side-channel attacks and RE

Can we RE the map ρ

Can we recover ρ(k) from P,Q and k?

10



Reverse-engineering using invalid parameters

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ ρ(k)

Q = [ρ(k)]P = [k]P

The scalar randomization k 7→ ρ(k) prohibits side-channel attacks and RE

Can we RE the map ρ

Can we recover ρ(k) from P,Q and k?

11



Reverse-engineering using invalid parameters

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ ρ(k)

Q = [ρ(k)]P = [k]P

• The scalar randomization k 7→ ρ(k) prohibits side-channel attacks and RE

• Can we RE the randomization algorithm ρ

• Can we recover the random mask used for ρ(k)?
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Usual suspects

Group scalar randomization

function Mult(P, k)

r
$←− {0, 1, . . . , 2b}

return [k + rn]P

Additive splitting

function Mult(P, k)

r
$←− Z∗

n

return [k − r ]P + [r ]P

Euclidean splitting

function Mult(P, k)

r
$←− {0, . . . , 2⌊log2(n)/2⌋}

S ← [r ]P

k1 ← k mod r

k2 ←
⌊
k
r

⌋
return [k1]P + [k2]S

Multiplicative splitting

function Mult(P, k)

r
$←− {0, 1, . . . , 2b}

S ← [r ]P

return [kr−1 mod n]S
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Test 3n: reverse-engineering ρ

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ ρ(k)

Q = [ρ(k)]P = [k]P

Test 3n: Select a curve with #E = 3n, a point P of order 3n and claim cofactor= 1

• GSR: [ρ(k)]P = [k + rn]P ∈ {[k]P, [k + n]P, [k + 2n]P} with prob. dist. 1
3 ,

1
3 ,

1
3

• Multiplicative: 2
9 ,

2
9 ,

5
9

• Euclidean: 1, 0, 0

• Additive: 1
2 ,

1
2 , 0
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Test n + ϵ: recovering the mask

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ k + rn
Q = [k + rn]P = [k]P

Test n + ϵ: Select a curve with composite n, point P of order n and claim #E = n + ϵ.

• Q = [k + r(n + ϵ)]P = [k + rϵ]P

• Solve the discrete logarithm problem for P,Q to find d = k + rϵ

• Simply compute r = d−k
ϵ

15



Test n + ϵ: recovering the mask

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ k + rn
Q = [k + rn]P = [k]P

Test n + ϵ: Select a curve with composite n, point P of order n and claim #E = n + ϵ.

• Q = [k + r(n + ϵ)]P = [k + rϵ]P

• Solve the discrete logarithm problem for P,Q to find d = k + rϵ

• Simply compute r = d−k
ϵ

15



Test n + ϵ: recovering the mask

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ k + rn
Q = [k + rn]P = [k]P

Test n + ϵ: Select a curve with composite n, point P of order n and claim #E = n + ϵ.

• Q = [k + r(n + ϵ)]P = [k + rϵ]P

• Solve the discrete logarithm problem for P,Q to find d = k + rϵ

• Simply compute r = d−k
ϵ

15



Test n + ϵ: recovering the mask

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ k + rn
Q = [k + rn]P = [k]P

Test n + ϵ: Select a curve with composite n, point P of order n and claim #E = n + ϵ.

• Q = [k + r(n + ϵ)]P = [k + rϵ]P

• Solve the discrete logarithm problem for P,Q to find d = k + rϵ

• Simply compute r = d−k
ϵ

15



RE results

Card Target 3n Composite k = 10 EPA ρ Mask

NXP 1

Derive 0.34, 0.33, 0.32 100% 86% ¿0 GSR ✗

Sign 0.31, 0.31, 0.38 83% - GSR 160

Keygen 0.32, 0.33, 0.35 100% - GSR 160

NXP 3

Derive 0.33, 0.32, 0.35 100% 98% GSR 32

Sign 0.31, 0.30, 0.39 85% - GSR 160

Keygen ✗ ✗ - ✗ ✗

NXP 4

Derive 0.22, 0.56, 0.22 82% 100% Mult 64

Sign 0.23, 0.23, 0.54 - - Mult ?

Keygen ✗ ✗ - ✗ ✗

NXP 6

Derive 0, 0, 1 100% 100% ⊏⊐ Euc.? 2

Sign 0, 0.52, 0.48 71% - Euc.? 2

Keygen 0, 0.51, 0.49 100% - Euc.? 2

. . . . . . . . . . . . . . . . . . . . . . . .
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Impact, limitations and discussion

Scalar randomization countermeasures are no longer secret under our RE

techniques

We can mount the learning phase of profiled attacks via Test n + ϵ

Path to RE of the scalar multiplier with scalar randomization

Cards with proper validation or internal fault detection

Combination of countermeasures

Proper validation comes with a high cost

Restrict API to standard named curves

Stay tuned for episode 3!
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Thank you!

Explore our tools

Come grab a sticker after the talk!

pyecsca.org � crocs-muni/ECTester

crocs.fi.muni.cz
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