ECTester: Reverse-engineering side-channel
countermeasures of ECC implementations

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda, tukasz Chmielewski

CR&CS CUES

Vibe of the talk

e Implementations of elliptic curve cryptography (ECC)

! E:y>=x3 b
L4 yoE e ECDH secret: Hash([k]P)
: [KIP=P+---+P

Vibe of the talk
e Implementations of elliptic curve cryptography (ECC)

S E:y?=x3 b
| y X7+ ax + ECDH secret: Hash([k]P)

o ECTester: toolkit for a black-box testing of ECC implementations
&SH%& — .0’

Vibe of the talk

e Implementations of elliptic curve cryptography (ECC)
| E:y2=x3 b
_ yoE e ECDH secret: Hash([k]P)
: [KIP=P+---+P

o ECTester: toolkit for a black-box testing of ECC implementations
&SH%& — .0’

e Lying to JavaCards to reverse-engineer (RE) randomization techniques protecting
a secret scalar.

— 8 — @

&S#%&

Previously at CHES 2024 ...

& pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel
analysis. CHES 2024.

Motivation:

& Side-channel attacks on ECC often assume a white-box attacker

@ Real-world implementations of ECC are usually black-box (smartcards, HSM,
TPM, or crypto-wallets)

Previously at CHES 2024 ...

& pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel
analysis. CHES 2024.

Results:

e Analysis of 18 open-source libraries showed a variety of implementation decisions
e Elliptic curve E
e Coordinate representation of points P € E
e Addition formulas for P + @
e Scalar multiplier for [k]P

Previously at CHES 2024 ...

& pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel
analysis. CHES 2024.

Results:

e Analysis of 18 open-source libraries showed a variety of implementation decisions

e Enumeration of the space of ECC implementations yielded > 139489 possibilities
= hard to guess!

e pyecsca toolkit for automatic RE of the scalar multiplier and the coordinate
system

Previously at CHES 2024 ...

& pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel
analysis. CHES 2024.

Limitations:
e Assumes that we can set the domain parameters

e Scalar randomization breaks the RE methods

e Not demonstrated on real-world black-box devices

Currently at CHES 2025

® ECTester: Reverse-engineering side-channel countermeasures of ECC
implementations. CHES 2025.

Contributions:

o ECTester: toolkit for testing ECC libraries and JavaCards

e Techniques for RE of scalar randomization countermeasures without side-channel
measurements

o RE of countermeasures on 13 JavaCards certified under CC or FIPS 140

ECTester

Host «
ECTester — oo
° . --------------
_________ [rooenrasaseasanananes

__JCA Rrovider_

{ UNI'shim |
U JeAPlovider | L '
: Native ;1 Java ! | JavaCard |
' library i 1 library | Custom applet

) crocs-muni/ECTester

Supported libraries

BoringSSL
Botan
BouncyCastle
Crypto++
Intel Cryptography Primitives
libgcrypt
LibreSSL
libtomcrypt
mbedTLS
Nettle
OpenSSL
SuneC

Supported smartcards
Any JavaCard >= 221

https://github.com/crocs-muni/ECTester

ECTester

E/F,:y?>=x3+ax+b

&

P € Ev k <n
#E = n - cofactor Q = [K]P
ECTester tests:
e Invalid curve attack PeE
e Small subgroup attack ord(P)=n
e Malformed signatures r,s #0
e Composite curve order nis prime

e Anomalous curves, supersingular curves p ¢ {#E —1,#E}

ECTester: testing input validation

Card ord P ord G primen Library ord P ord G primen
NXP 1 v v v BoringSSL v v v
NXP 2 v v v Botan v v v
NXP 3 v v v BouncyCastle v v v
NXP 4 v v v Crypto++ v v v
NXP 6 v v v Intel Crypto v X v
NXP 9 v v v libgcrypt X X X

Infineon 1 v v v LibreSSL v X v
Infineon 2 v v X libtomcrypt v X X
Athena X X X mbedTLS v v v

G&D X X v Nettle X X X

TaiSYS v v v OpenSSL v X v
Feitian 1 v v v SunEC X X X
Feitian 2 v v v

v = success, X= fail to pass validation with invalid parameters

Reverse-engineering using invalid parameters

E/F,:y?>=x3+ax+b O 0
PeE, k<n QP T

#E = n - cofactor Q = [K]P

10

Reverse-engineering using invalid parameters

E/Fp:y2:X3—|—ax—|—b
PecE, k<n
#E = n - cofactor

iﬂ—’Q

k — p(k
= [p(K)]P = [k]P

11

Reverse-engineering using invalid parameters

E/Fp:y2:X3—|—ax—|—b

PeE, k<n .’—> Q

#E = n - cofactor k — p(k
= [p(K)IP = [k]P

e The scalar randomization k — p(k) prohibits side-channel attacks and RE
e Can we RE the randomization algorithm p

e Can we recover the random mask used for p(k)?

12

Usual suspects

Group scalar randomization

function MuLT(P, k)
r<{0,1,...,2°}
return [k + rn]P

Additive splitting
function MuLT(P, k)
$ %
r < 7j
return [k — r|P + [r]P

Euclidean splitting

function MuLT(P, k)
r & {0,...,2leea(n/2y
S« [r]P
ki <+ k mod r
ke [¥]
return [ki|P + [k2]S

Multiplicative splitting
function MuLT(P, k)
re{0,1,...,2°}
S« [r]P
return [kr~! mod n]S

13

Test 3n: reverse-engineering p

E/Fp:yzzx3+ax+b

PcE, k<n .’_’ @

#E = n - cofactor k — p(k
= [p(K)]P = [k]P

Test 3n: Select a curve with #2E = 3n, a point P of order 3n and claim cofactor=1

14

Test 3n: reverse-engineering p

E/Fp:yzzx3+ax+b
PEE, k<n .’—’ Q
#E = n - cofactor k — p(k

= [p(k)]P = [k]P

Test 3n: Select a curve with #2E = 3n, a point P of order 3n and claim cofactor=1

* GSR: [p(k)]P = [k + m]P € {[K|P, [k + n]P, [k +2n] P} with prob. dist. §, 3,3

14

Test 3n: reverse-engineering p

E/Fp:yzzx3+ax+b
PEE, k<n .’—’ Q
#E = n - cofactor k — p(k

= [p(k)]P = [k]P

Test 3n: Select a curve with #2E = 3n, a point P of order 3n and claim cofactor=1

* GSR: [p(k)]P = [k + m]P € {[K|P, [k + n]P, [k +2n] P} with prob. dist. §, 3,3

e Multiplicative: §, 5,3

14

Test 3n: reverse-engineering p

E/Fp:yzzx3+ax+b
PEE, k<n .’—’ Q
#E = n - cofactor k — p(k

= [p(k)]P = [k]P

Test 3n: Select a curve with #2E = 3n, a point P of order 3n and claim cofactor=1

* GSR: [p(k)]P = [k + m]P € {[K|P, [k + n]P, [k +2n] P} with prob. dist. §, 3,3

e Multiplicative: §, 5,3

e Euclidean: 1,0,0

14

Test 3n: reverse-engineering p

E/Fp:yzzx3+ax+b
PEE, k<n .’—’ Q
#E = n - cofactor k — p(k

= [p(k)]P = [k]P

Test 3n: Select a curve with #2E = 3n, a point P of order 3n and claim cofactor=1

* GSR: [p(k)]P = [k + m]P € {[K|P, [k + n]P, [k +2n] P} with prob. dist. §, 3,3

e Multiplicative: §, 5,3

e Euclidean: 1,0,0
e Additive: 1,10

14

Test n + e: recovering the mask

E/F,:y?>=x3+ax+b
PecE, k<n
#E = n - cofactor k— k+rn

Q = [k + m]|P = [k]P

&

Test n+ e: Select a curve with composite n, point P of order n and claim #E = n+e.

15

Test n + e: recovering the mask

E/F,:y?>=x3+ax+b
PecE, k<n
#E = n - cofactor k— k+rn

Q = [k + m]|P = [k]P

&

Test n+ e: Select a curve with composite n, point P of order n and claim #E = n+e.

e Q=[k+r(n+¢€)]P=[k+re]P

15

Test n + e: recovering the mask

E/F,:y?>=x3+ax+b
PeE, k<n
#E = n - cofactor k— k+rn

Q = [k + m]|P = [k]P

&

Test n+ e: Select a curve with composite n, point P of order n and claim #E = n+e.

e Q=[k+r(n+¢€)]P=[k+re]P
e Solve the discrete logarithm problem for P, @ to find d = k + re

15

Test n + e: recovering the mask

E/F,:y?>=x3+ax+b
PeE, k<n
#E = n - cofactor k— k+rn

Q = [k + m]|P = [k]P

&

Test n+ e: Select a curve with composite n, point P of order n and claim #E = n+e.

e Q=[k+r(n+¢€)]P=[k+re]P
e Solve the discrete logarithm problem for P, @ to find d = k + re

: _ d—k
e Simply compute r = =

15

RE results

Card | Target 3n Composite k=10 EPA p Mask
Derive 0.34,0.33,0.32 100% 86% i0 GSR X
NXP 1 | Sign 0.31,0.31,0.38 83% - GSR 160
Keygen 0.32,0.33,0.35 100% - GSR 160
Derive 0.33,0.32,0.35 100% 98% GSR 32
NXP 3 | Sign 0.31,0.30,0.39 85% - GSR 160
Keygen X X - X X
Derive 0.22,0.56,0.22 82% 100% Mult 64
NXP 4 | Sign 0.23,0.23,0.54 - ; Mult 7
Keygen X X - X X
Derive 0,0,1 100% 100% O | Euc? 2
NXP 6 Sign 0,0.52,0.48 71% - Euc.? 2
Keygen 0,0.51,0.49 100% - Euc.? 2

16

Impact, limitations and discussion

¥ Scalar randomization countermeasures are no longer secret under our RE
techniques

17

Impact, limitations and discussion

¥ Scalar randomization countermeasures are no longer secret under our RE
techniques

¥ \We can mount the learning phase of profiled attacks via Test n + ¢

17

Impact, limitations and discussion

¥ Scalar randomization countermeasures are no longer secret under our RE
techniques
¥ \We can mount the learning phase of profiled attacks via Test n + ¢

¥ Path to RE of the scalar multiplier with scalar randomization

17

Impact, limitations and discussion

¥ Scalar randomization countermeasures are no longer secret under our RE

techniques
¥ \We can mount the learning phase of profiled attacks via Test n + ¢
¥ Path to RE of the scalar multiplier with scalar randomization

A Cards with proper validation or internal fault detection

17

Impact, limitations and discussion

¥ Scalar randomization countermeasures are no longer secret under our RE
techniques

¥ \We can mount the learning phase of profiled attacks via Test n + ¢
¥ Path to RE of the scalar multiplier with scalar randomization
A Cards with proper validation or internal fault detection

A Combination of countermeasures

17

Impact, limitations and discussion

¥ Scalar randomization countermeasures are no longer secret under our RE

techniques
¥ \We can mount the learning phase of profiled attacks via Test n + ¢
¥ Path to RE of the scalar multiplier with scalar randomization
A Cards with proper validation or internal fault detection
A Combination of countermeasures

® Proper validation comes with a high cost

17

Impact, limitations and discussion

¥ Scalar randomization countermeasures are no longer secret under our RE

techniques

We can mount the learning phase of profiled attacks via Test n+ €
Path to RE of the scalar multiplier with scalar randomization
Cards with proper validation or internal fault detection
Combination of countermeasures

Proper validation comes with a high cost

e @ > > ¥ ¥

Restrict APl to standard named curves

Stay tuned for episode 3!

17

Thank you!

Explore our tools

Come grab a sticker after the talk!

m pyecsca EC 'I"e:ste.r

pyecsca.org) crocs-muni/ECTester

CR&CS

crocs.fi.muni.cz

18

https://pyecsca.org/
https://github.com/crocs-muni/ECTester
https://crocs.fi.muni.cz/

