
ECTester: Reverse-engineering side-channel

countermeasures of ECC implementations

Vojtech Suchanek, Jan Jancar, Jan Kvapil, Petr Svenda, Lukasz Chmielewski

Vibe of the talk

• Implementations of elliptic curve cryptography (ECC)

E : y2 = x3 + ax + b

[k]P = P + · · ·+ P
ECDH secret: Hash([k]P)

• ECTester: toolkit for a black-box testing of ECC implementations

&$#%&

• Lying to JavaCards to reverse-engineer (RE) randomization techniques protecting

a secret scalar.

&$#%&

1

Vibe of the talk

• Implementations of elliptic curve cryptography (ECC)

E : y2 = x3 + ax + b

[k]P = P + · · ·+ P
ECDH secret: Hash([k]P)

• ECTester: toolkit for a black-box testing of ECC implementations

&$#%&

• Lying to JavaCards to reverse-engineer (RE) randomization techniques protecting

a secret scalar.

&$#%&

1

Vibe of the talk

• Implementations of elliptic curve cryptography (ECC)

E : y2 = x3 + ax + b

[k]P = P + · · ·+ P
ECDH secret: Hash([k]P)

• ECTester: toolkit for a black-box testing of ECC implementations

&$#%&

• Lying to JavaCards to reverse-engineer (RE) randomization techniques protecting

a secret scalar.

&$#%&

1

Previously at CHES 2024 ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel

analysis. CHES 2024.

Motivation:

Side-channel attacks on ECC often assume a white-box attacker

Real-world implementations of ECC are usually black-box (smartcards, HSM,

TPM, or crypto-wallets)

2

Previously at CHES 2024 ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel

analysis. CHES 2024.

Results:

• Analysis of 18 open-source libraries showed a variety of implementation decisions

• Elliptic curve E

• Coordinate representation of points P ∈ E

• Addition formulas for P + Q

• Scalar multiplier for [k]P

. . .

3

Previously at CHES 2024 ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel

analysis. CHES 2024.

Results:

• Analysis of 18 open-source libraries showed a variety of implementation decisions

• Enumeration of the space of ECC implementations yielded > 139 489 possibilities

⇒ hard to guess!

• pyecsca toolkit for automatic RE of the scalar multiplier and the coordinate

system

4

Previously at CHES 2024 ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel

analysis. CHES 2024.

Limitations:

• Assumes that we can set the domain parameters

• Scalar randomization breaks the RE methods

• Not demonstrated on real-world black-box devices

5

Currently at CHES 2025

ECTester: Reverse-engineering side-channel countermeasures of ECC

implementations. CHES 2025.

Contributions:

• ECTester: toolkit for testing ECC libraries and JavaCards

• Techniques for RE of scalar randomization countermeasures without side-channel

measurements

• RE of countermeasures on 13 JavaCards certified under CC or FIPS 140

6

ECTester

ECTester
Host

Native
library

Java
library

JNI shim

Custom applet

Card reader

JavaCard

JCA Provider

JCA Provider

Supported libraries
BoringSSL
Botan
BouncyCastle
Crypto++

libgcrypt
LibreSSL
libtomcrypt

Intel Cryptography Primitives

mbedTLS
Nettle
OpenSSL
SunEC

Supported smartcards
Any JavaCard >= 2.2.1

� crocs-muni/ECTester

7

https://github.com/crocs-muni/ECTester

ECTester

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

Q = [k]P

ECTester tests:

• Invalid curve attack

• Small subgroup attack

• Malformed signatures

• Composite curve order

• Anomalous curves, supersingular curves

. . .

P ∈ E

ord(P) = n

r , s ̸= 0

n is prime

p /∈ {#E − 1,#E}
. . .

8

ECTester: testing input validation

Card ord P ord G prime n

NXP 1 ✓ ✓ ✓

NXP 2 ✓ ✓ ✓

NXP 3 ✓ ✓ ✓

NXP 4 ✓ ✓ ✓

NXP 6 ✓ ✓ ✓

NXP 9 ✓ ✓ ✓

Infineon 1 ✓ ✓ ✓

Infineon 2 ✓ ✓ ✗

Athena ✗ ✗ ✗

G&D ✗ ✗ ✓

TaiSYS ✓ ✓ ✓

Feitian 1 ✓ ✓ ✓

Feitian 2 ✓ ✓ ✓

Library ord P ord G prime n

BoringSSL ✓ ✓ ✓

Botan ✓ ✓ ✓

BouncyCastle ✓ ✓ ✓

Crypto++ ✓ ✓ ✓

Intel Crypto ✓ ✗ ✓

libgcrypt ✗ ✗ ✗

LibreSSL ✓ ✗ ✓

libtomcrypt ✓ ✗ ✗

mbedTLS ✓ ✓ ✓

Nettle ✗ ✗ ✗

OpenSSL ✓ ✗ ✓

SunEC ✗ ✗ ✗

✓= success, ✗= fail to pass validation with invalid parameters

9

Reverse-engineering using invalid parameters

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

Q = [k]P

The scalar randomization k 7→ ρ(k) prohibits side-channel attacks and RE

Can we RE the map ρ

Can we recover ρ(k) from P,Q and k?

10

Reverse-engineering using invalid parameters

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ ρ(k)

Q = [ρ(k)]P = [k]P

The scalar randomization k 7→ ρ(k) prohibits side-channel attacks and RE

Can we RE the map ρ

Can we recover ρ(k) from P,Q and k?

11

Reverse-engineering using invalid parameters

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ ρ(k)

Q = [ρ(k)]P = [k]P

• The scalar randomization k 7→ ρ(k) prohibits side-channel attacks and RE

• Can we RE the randomization algorithm ρ

• Can we recover the random mask used for ρ(k)?

12

Usual suspects

Group scalar randomization

function Mult(P, k)

r
$←− {0, 1, . . . , 2b}

return [k + rn]P

Additive splitting

function Mult(P, k)

r
$←− Z∗

n

return [k − r]P + [r]P

Euclidean splitting

function Mult(P, k)

r
$←− {0, . . . , 2⌊log2(n)/2⌋}

S ← [r]P

k1 ← k mod r

k2 ←
⌊
k
r

⌋
return [k1]P + [k2]S

Multiplicative splitting

function Mult(P, k)

r
$←− {0, 1, . . . , 2b}

S ← [r]P

return [kr−1 mod n]S

13

Test 3n: reverse-engineering ρ

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ ρ(k)

Q = [ρ(k)]P = [k]P

Test 3n: Select a curve with #E = 3n, a point P of order 3n and claim cofactor= 1

• GSR: [ρ(k)]P = [k + rn]P ∈ {[k]P, [k + n]P, [k + 2n]P} with prob. dist. 1
3 ,

1
3 ,

1
3

• Multiplicative: 2
9 ,

2
9 ,

5
9

• Euclidean: 1, 0, 0

• Additive: 1
2 ,

1
2 , 0

14

Test 3n: reverse-engineering ρ

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ ρ(k)

Q = [ρ(k)]P = [k]P

Test 3n: Select a curve with #E = 3n, a point P of order 3n and claim cofactor= 1

• GSR: [ρ(k)]P = [k + rn]P ∈ {[k]P, [k + n]P, [k + 2n]P} with prob. dist. 1
3 ,

1
3 ,

1
3

• Multiplicative: 2
9 ,

2
9 ,

5
9

• Euclidean: 1, 0, 0

• Additive: 1
2 ,

1
2 , 0

14

Test 3n: reverse-engineering ρ

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ ρ(k)

Q = [ρ(k)]P = [k]P

Test 3n: Select a curve with #E = 3n, a point P of order 3n and claim cofactor= 1

• GSR: [ρ(k)]P = [k + rn]P ∈ {[k]P, [k + n]P, [k + 2n]P} with prob. dist. 1
3 ,

1
3 ,

1
3

• Multiplicative: 2
9 ,

2
9 ,

5
9

• Euclidean: 1, 0, 0

• Additive: 1
2 ,

1
2 , 0

14

Test 3n: reverse-engineering ρ

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ ρ(k)

Q = [ρ(k)]P = [k]P

Test 3n: Select a curve with #E = 3n, a point P of order 3n and claim cofactor= 1

• GSR: [ρ(k)]P = [k + rn]P ∈ {[k]P, [k + n]P, [k + 2n]P} with prob. dist. 1
3 ,

1
3 ,

1
3

• Multiplicative: 2
9 ,

2
9 ,

5
9

• Euclidean: 1, 0, 0

• Additive: 1
2 ,

1
2 , 0

14

Test 3n: reverse-engineering ρ

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ ρ(k)

Q = [ρ(k)]P = [k]P

Test 3n: Select a curve with #E = 3n, a point P of order 3n and claim cofactor= 1

• GSR: [ρ(k)]P = [k + rn]P ∈ {[k]P, [k + n]P, [k + 2n]P} with prob. dist. 1
3 ,

1
3 ,

1
3

• Multiplicative: 2
9 ,

2
9 ,

5
9

• Euclidean: 1, 0, 0

• Additive: 1
2 ,

1
2 , 0

14

Test n + ϵ: recovering the mask

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ k + rn
Q = [k + rn]P = [k]P

Test n + ϵ: Select a curve with composite n, point P of order n and claim #E = n + ϵ.

• Q = [k + r(n + ϵ)]P = [k + rϵ]P

• Solve the discrete logarithm problem for P,Q to find d = k + rϵ

• Simply compute r = d−k
ϵ

15

Test n + ϵ: recovering the mask

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ k + rn
Q = [k + rn]P = [k]P

Test n + ϵ: Select a curve with composite n, point P of order n and claim #E = n + ϵ.

• Q = [k + r(n + ϵ)]P = [k + rϵ]P

• Solve the discrete logarithm problem for P,Q to find d = k + rϵ

• Simply compute r = d−k
ϵ

15

Test n + ϵ: recovering the mask

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ k + rn
Q = [k + rn]P = [k]P

Test n + ϵ: Select a curve with composite n, point P of order n and claim #E = n + ϵ.

• Q = [k + r(n + ϵ)]P = [k + rϵ]P

• Solve the discrete logarithm problem for P,Q to find d = k + rϵ

• Simply compute r = d−k
ϵ

15

Test n + ϵ: recovering the mask

E/Fp : y2 = x3 + ax + b

P ∈ E , k < n
#E = n · cofactor

Q

k 7→ k + rn
Q = [k + rn]P = [k]P

Test n + ϵ: Select a curve with composite n, point P of order n and claim #E = n + ϵ.

• Q = [k + r(n + ϵ)]P = [k + rϵ]P

• Solve the discrete logarithm problem for P,Q to find d = k + rϵ

• Simply compute r = d−k
ϵ

15

RE results

Card Target 3n Composite k = 10 EPA ρ Mask

NXP 1

Derive 0.34, 0.33, 0.32 100% 86% ¿0 GSR ✗

Sign 0.31, 0.31, 0.38 83% - GSR 160

Keygen 0.32, 0.33, 0.35 100% - GSR 160

NXP 3

Derive 0.33, 0.32, 0.35 100% 98% GSR 32

Sign 0.31, 0.30, 0.39 85% - GSR 160

Keygen ✗ ✗ - ✗ ✗

NXP 4

Derive 0.22, 0.56, 0.22 82% 100% Mult 64

Sign 0.23, 0.23, 0.54 - - Mult ?

Keygen ✗ ✗ - ✗ ✗

NXP 6

Derive 0, 0, 1 100% 100% ⊏⊐ Euc.? 2

Sign 0, 0.52, 0.48 71% - Euc.? 2

Keygen 0, 0.51, 0.49 100% - Euc.? 2

. .

16

Impact, limitations and discussion

Scalar randomization countermeasures are no longer secret under our RE

techniques

We can mount the learning phase of profiled attacks via Test n + ϵ

Path to RE of the scalar multiplier with scalar randomization

Cards with proper validation or internal fault detection

Combination of countermeasures

Proper validation comes with a high cost

Restrict API to standard named curves

Stay tuned for episode 3!

17

Impact, limitations and discussion

Scalar randomization countermeasures are no longer secret under our RE

techniques

We can mount the learning phase of profiled attacks via Test n + ϵ

Path to RE of the scalar multiplier with scalar randomization

Cards with proper validation or internal fault detection

Combination of countermeasures

Proper validation comes with a high cost

Restrict API to standard named curves

Stay tuned for episode 3!

17

Impact, limitations and discussion

Scalar randomization countermeasures are no longer secret under our RE

techniques

We can mount the learning phase of profiled attacks via Test n + ϵ

Path to RE of the scalar multiplier with scalar randomization

Cards with proper validation or internal fault detection

Combination of countermeasures

Proper validation comes with a high cost

Restrict API to standard named curves

Stay tuned for episode 3!

17

Impact, limitations and discussion

Scalar randomization countermeasures are no longer secret under our RE

techniques

We can mount the learning phase of profiled attacks via Test n + ϵ

Path to RE of the scalar multiplier with scalar randomization

Cards with proper validation or internal fault detection

Combination of countermeasures

Proper validation comes with a high cost

Restrict API to standard named curves

Stay tuned for episode 3!

17

Impact, limitations and discussion

Scalar randomization countermeasures are no longer secret under our RE

techniques

We can mount the learning phase of profiled attacks via Test n + ϵ

Path to RE of the scalar multiplier with scalar randomization

Cards with proper validation or internal fault detection

Combination of countermeasures

Proper validation comes with a high cost

Restrict API to standard named curves

Stay tuned for episode 3!

17

Impact, limitations and discussion

Scalar randomization countermeasures are no longer secret under our RE

techniques

We can mount the learning phase of profiled attacks via Test n + ϵ

Path to RE of the scalar multiplier with scalar randomization

Cards with proper validation or internal fault detection

Combination of countermeasures

Proper validation comes with a high cost

Restrict API to standard named curves

Stay tuned for episode 3!

17

Impact, limitations and discussion

Scalar randomization countermeasures are no longer secret under our RE

techniques

We can mount the learning phase of profiled attacks via Test n + ϵ

Path to RE of the scalar multiplier with scalar randomization

Cards with proper validation or internal fault detection

Combination of countermeasures

Proper validation comes with a high cost

Restrict API to standard named curves

Stay tuned for episode 3!

17

Thank you!

Explore our tools

Come grab a sticker after the talk!

pyecsca.org � crocs-muni/ECTester

crocs.fi.muni.cz

18

https://pyecsca.org/
https://github.com/crocs-muni/ECTester
https://crocs.fi.muni.cz/

